Chapter 9 - Examples

1. Assume Vesemir Corp expects earnings per share of $\$ 11$ a year from today. Assume also that over the next three years, Vesemir expects to pay out 20% of its earnings as dividends and to reinvest 80% of earnings in projects earning a rate of return of 25%. Starting four years from today and continuing thereafter forever, Vesemir's return on new investments will fall to 8%, and Vesemir will boost its payout to 90% of earnings. What is the value today of Vesemir's stock if Vesemir's equity cost of capital equals 12% ?

$$
\begin{array}{ll}
D_{1}=.2 \times 11=2.20 & g_{5+}=.1 \times .08=.008 \\
g_{1-4}=.8 \times .25=.2 & T_{3}=\frac{\lambda_{4}}{.12-.008}=152.77 \\
E_{4}=11(1.2)^{3}=19.01 & P_{0}=\left(\frac{2.2}{.12-.2}\right)\left(1-\left(\frac{1.2}{1.12}\right)^{3}\right)+\frac{1577}{(1.12)^{3}} \\
D_{4}=.9 \times 19.01=17.11 & =6.32+10874=115.06
\end{array}
$$

2. Assume a firm had revenues of $\$ 121$ million for the year ended today and that revenues are expected to grow at a rate of 25% per year through five years from today. Variable costs will equal 70% of sales and fixed costs will equal $\$ 15$ million per year. Depreciation will equal $\$ 8$ million per year. Cash equals 17% of revenues in the current year and accounts receivable equal 17% of revenues in the current year. Inventory equals 16% of the following year's sales, and accounts payable equal 90% of inventory. The firm's tax rate equals 21%. The cost of capital for the firm equals 8%. Beyond year 5 , free cash flows (and revenues) are expected to grow at a rate of 2% per year forever. The firm's outstanding debt equals $\$ 95$ million and the firm has 9 million shares outstanding. What is the price per share for the firm's stock?

Note: if you plug this information into the spreadsheet on my website (name of link is "Discounted FCF Examplé), the Free Cash Flows are as follows:

Year	1	2	3	4	5
Free Cash Flow:	6.79	13.03	20.82	30.57	44.12

$$
\begin{aligned}
& V_{4}= \frac{44.12}{.08 .02}=735.33 \\
& V_{0}= \frac{6.79}{1.08}+\frac{13.03}{(1.08)^{2}}+\frac{20.82}{(1.08)^{3}}+\frac{30.5)+73533}{(1.08)^{4}} \\
&= 6.28+11.17+16.53+562.93=596.93=\text { Enter prise value } \\
& C M 2: E V=M V E+(D-C) \Rightarrow M V E=E V-D+C \\
& C=.17 \times 0.1=20.575 \\
&M V E=1596.93-95+20.57)=5225 ; \rho_{0}=\frac{522.5}{9}=58.05
\end{aligned}
$$

