\qquad
Summer Heat Inc. is considering building a new plant at a cost of $\$ 100$ million. The facility would generate its first net cash flow of $\$ 27$ million one year from today. In subsequent years, net cash flows would grow by 5% per year through the plant's closing 20 years from today. If sales fall short of expectations, the facility can be sold three years from today for $\$ 55$ million. If sales from the new plant exceed expectations, it can be expanded at a cost of $\$ 50$ million four years from today. The expansion would be expected to generate its first cash flow of $\$ 10$ million five years from today. Subsequent cash flows would grow by 1% per year through the plant's closing 20 years from today. The standard deviation of returns on the new facility will equal 25% over its life, 34% over the next three years, and 29% over the next four years. The standard deviation of returns on the expansion will equal 45% over the next three years, 48% over the next four years, and 50% once in place. The cost of capital on the new plant is 12% and on the expansion is 15%. Finally, the risk-free interest rate varies by maturity as follows: 1 -year $=0.5 \% ; 2$-year $=0.9 \% ; 3$-year $=1.2 \% ; 4$-year $=1.5 \% ; 5$-year $=1.9 \% ; 10-$ year $=2.8 \% ; 20-$ year $=3.5 \%$.

How does the possibility of selling the new plant if sales fall short of expectations affect the value of the new plant to Summer Heat?

$$
\begin{aligned}
& +5 P=P D(k)\left(1-N\left(d_{2}\right)\right)-S^{x}\left(1-N\left(d_{1}\right)\right) \\
& \left.+5 P V(K)=\frac{55}{(1.012)^{3}+5}+10\right)^{+5} \\
& +5 d_{2}=d_{1}-\sigma \sqrt{T} \\
& +5 d_{1}=\frac{\ln \left(\frac{5 x}{\sigma(k)}\right)}{\sigma \sqrt{T}}+\frac{\sigma \sqrt{T}}{2} \\
& \sigma=.34+10
\end{aligned}
$$

$$
\begin{aligned}
T & =3+5 \\
+5 \quad S^{x} & =\left(\begin{array}{c}
+27 \\
.12-.05 \\
+2 \\
+2
\end{array}\right)\left(1-\left(\frac{1.05}{1.12}\right)^{+2}\right)-\left(\frac{27}{.12-.05}\right)\left(1-\left(\frac{1.05}{1.12}\right)^{+2}\right)
\end{aligned}
$$

Look up $N\left(d_{1}\right)+N\left(d_{2}\right)$ on table or calculate using $E x$ eel

