Finance 5360 Quiz A: 7/20/15

Name Key

(ZD

Set up the calculations need to determine <u>unlevered net income</u> and <u>free cash flow</u> for the new facility both <u>today</u> and <u>three years from today</u>. Note: You only need to set up all the appropriate equations and fill in the correct numbers. You don't have to solve anything.

Wal-Mart is considering building a new store in the Waco area. According to a feasibility study commissioned by Wal-Mart, the new store will generate an estimated \$100 million of sales a year from today. However, since some of the customers shopping at the new store would have made identical purchases at other existing Wal-Mart stores, Wal-Mart's total sales will only increase by \$85 million a year from today. Sales are expected to increase by 3.5% per year through the store's closing 20 years from today. The \$5 million fee for the feasibility study is due today. The new store will have fixed selling and administrative costs of \$15 million per year and variable costs (including the cost of goods sold) will equal 75% of sales. Suitable land will cost \$20 million. The building will be depreciated using the 15-year MACRS class starting a year from today. Wal-Mart's marginal tax rate equals 35%. Changes in Wal-Mart's short-term assets and liabilities (in millions) for the next five years if the new store is built vary by year as follows (Year 0 is today, Year 1 is a year from today, Year 2 is two years from today, etc.)

Year	0	1	2	3	4	5
Cash	0.00	1.29	1.32	1.33	1.31	1.36
AR	0.00	1.2	1.23	1.32	1.43	1.51
Inv	0.00	8.03	8.32	8.2	8.72	9.31
AP	0.00	6.69	6.82	7.02	7.6	7.49
Short-term Debt	1.35	1.38	1.37	1.37	1.47	1.47

+4/
$$UNT_{3} = (R_{3} - E_{3} - D_{3})(1 - .35)$$
 (6)
 $R_{3} = \frac{44}{85}(1.035)^{2}$ (12)
 $E_{3} = .75(R_{3}) + 15$ (8)
 $D_{3} = \frac{20}{0}(.0855)$ (6)
+4($FCF_{3} = UNT_{3} + D_{3} - O - \Delta NWC_{3}$ (4)
×4($\Delta NWC = (1.33 + 1.32 + 8.2 - 7.02) - (1.32 + 1.73 + 8.32 - 6.62)$

+2 +2 +2 +2