\qquad Key

Assume you plan to make the first of a series of annual deposits into an account seven months from today. Your deposits will grow by 1% each through your final deposit five years and seven months from today. You plan to make the first $\$ 150$ quarterly withdraw from the account six years and two months from today. Your plan to make your final $\$ 150$ withdrawal (all withdrawals are $\$ 150$) eight years and five months from today. How large do you need to make your first deposit if the account pays an APR of 5\% with monthly compounding?

$$
\begin{align*}
& +7 r\left(\frac{1}{12}\right)=\frac{.05}{12}+\frac{12}{12} \\
& +3 r(1)=\left(1+r\left(\frac{1}{12}\right)\right)^{12+1}-1(7) \\
& +3 r\left(\frac{1}{4}\right)=\left(1+r\left(\frac{1}{12}\right)\right)^{\frac{+1}{3}}-1 \text { (7) } \tag{15}
\end{align*}
$$

$$
\begin{align*}
& \rightarrow P V_{543,7100}=A\left(\frac{1}{1+r\left(\frac{1}{2}\right)}\right)^{+6}=B \tag{13}\\
& \rightarrow F V_{5 \text { yrs, 7m0 }}=\left(\frac{C}{(r(1)-01+2}\right)\left((1+r(1))^{6}-(1.01)^{6}\right)=\lambda \text { (15) } \\
& \Rightarrow \text { set } B=D \text { \& solve for } C .+5
\end{align*}
$$

