Quiz A for 2:30 Class: 04/17/13

Name <u>Key</u>

Using the following information, set up the calculations (write out equations and plug in the numbers) needed to determine the value of a call on Abbott Laboratories that expires on July 19, 2013 (93 days from today) and which has a strike price of \$35. You plan to hold this call only through June 21, 2013 (65 days from today). Risk-free interest rates (all less than 1%) vary by maturity as follows: 5/16 = 0.030%, 5/23 = 0.020%, 5/30 = 0.035%, 6/6 = 0.040%, 6/13 = 0.036%, 6/20 = 0.041%, 6/27 = 0.042%, 7/5 = 0.046%, 7/11 = 0.056%, 7/18 = 0.051%, and 7/25 = 0.057%. Note: All of the following are per-share data related to Abbott Laboratories.

Actual or expected values as of:

	4/17	6/21	<u>7/19</u>
Assets	40	42	45
Stock	36	37	39
Debt	4	5	6

Expected standard deviation between now and:

4/17	6/21	7/19		
11%	12%	13.5%		
13%	14%	15%		
3%	4%	5%		
58%	60%	63%		
62%	64%	65%		
	4/17 11% 13% 3% 58%	4/17 6/21 11% 12% 13% 14% 3% 4% 58% 60%		

Wall Street Journal Questions are on the back of this page.

+3 ($d_1 = \frac{2n(\frac{36}{15}\sqrt{\frac{3}{23}+2})}{\frac{15}{15}\sqrt{\frac{93}{365}+2}} + \frac{15\sqrt{\frac{93}{365}}}{2}$ +3 ($1 \times CK$) = $\frac{35}{(1.00051)}\sqrt{\frac{93}{365}}$ +3 ($1 \times CK$) = $\frac{35}{(1.00051)}\sqrt{\frac{93}{365}}$ +3 ($1 \times CK$) = $\frac{35}{(1.00051)}\sqrt{\frac{93}{365}}$ +4 ($1 \times CK$) = $1 \times CK$ ($1 \times CK$) = $1 \times CK$) = $1 \times CK$ ($1 \times CK$) =