Quiz A for 1:00 Class: 04/17/13

Name Key

Using the following information, set up the calculations (write out equations and plug in the numbers) needed to determine the value of a call on Exxon Mobil that expires on July 19, 2013 (93 days from today) and which has a strike price of \$85. You plan to hold this call only through June 21, 2013 (65 days from today). Risk-free interest rates (all less than 1%) vary by maturity as follows: 5/16 = 0.030%, 5/23 = 0.020%, 5/30 = 0.035%, 6/6 = 0.040%, 6/13 = 0.036%, 6/20 = 0.041%, 6/27 = 0.042%, 7/5 = 0.046%, 7/11 = 0.056%, 7/18 = 0.051%, and 7/25 = 0.057%. Note: All of the following are per-share data related to Exxon Mobil.

Actual or expected values as of:

1 totaat of	oxpootou	raideb ab	U.	
	4/17	6/21	7/19	
Assets	89	92	94.5	
Stock	86	88	90	
Debt	3	4	4.5	

Expected standard deviation between now and:

•	4/17	6/21	7/19
Assets	12%	13%	13.5%
Stock	14%	15%	16%
Debt	1%	2%	2.5%
This call	60%	62%	65%
Equivalent put	65%	67%	69%

Wall Street Journal Questions are on the back of this page.

+3 ($d_1 = \frac{\ln(\sqrt{86})}{\sqrt{16}\sqrt{\frac{93}{365}}} + \frac{16\sqrt{\frac{83}{365}}}{\sqrt{2}}$ +3 ($f_V C = \frac{85^{\frac{7}{2}}}{(1.0005)}\sqrt{\frac{93}{365}}$ $+3 (<math>d_2 = d_1 - \frac{16\sqrt{\frac{93}{365}}}{\sqrt{365}} + \frac{16\sqrt{\frac{93}{365}}}{\sqrt{2}}$ +4 ($C = 86(\sqrt{86})$) - $f_V C = \sqrt{86}\sqrt{86}$ +1 \$ ($g_2 = g_3 = g_4 = g_4 = g_5 = g_5 = g_5 = g_6 = g_6$