Key to 1:25 Quiz: 2/29/12

Quiz: Use the following information to calculate the beta of T (AT\&T) and the beta of a portfolio where you invest $\$ 200,000$ in T and $\$ 300,000$ in Dell which has a beta of 1.33.

$$
\begin{aligned}
& \text { Return on: } \\
& \beta_{p}=\left(\frac{200,000}{200,000+300,000}\right) \beta_{T}+\left(\frac{300,000}{200,000+300,000}\right) 1.33 \\
& \beta_{T}=\frac{\operatorname{Cov}\left(R_{T}, R_{S \& P}\right)}{\operatorname{Var}\left(R_{S \& P}\right)} \\
& \operatorname{Cov}\left(R_{T}, R_{S \& P}\right)=\frac{1}{3}\left(\left(\left(13-\bar{R}_{T}\right)\left(2-\bar{R}_{S \& P}\right)+\left(16-\bar{R}_{T}\right)\left(20-\bar{R}_{S \& P}\right)+\left(10-\bar{R}_{T}\right)\left(30-\bar{R}_{S \& P}\right)+\left(-33-\bar{R}_{T}\right)\left(-40-\bar{R}_{S \& P}\right)\right)\right) \\
& \bar{R}_{T}=\frac{1}{4}(13+16+10-33) \\
& \bar{R}_{S \& P}=\frac{1}{4}(2+20+30-40) \\
& \operatorname{Var}\left(R_{S \& P}\right)=\frac{1}{3}\left(\left(2-\bar{R}_{S \& P}\right)^{2}+\left(20-\bar{R}_{S \& P}\right)^{2}+\left(30-\bar{R}_{S \& P}\right)^{2}+\left(-40-\bar{R}_{S \& P}\right)^{2}\right)
\end{aligned}
$$

