\qquad
Assume you are planning to buy a call on Saks $5^{\text {th }}$ Avenue with an exercise price of $\$ 9$ that expires 67 days from today on $1 / 18 / 13$. As soon as the call expires, you plan to buy a second call that expires 95 days from today on $2 / 15 / 13$. Saks' stock price currently equals $\$ 10$ per share. By $1 / 18 / 13$, you expect Saks' stock price to rise to $\$ 12$ per share and by $2 / 15 / 13$, you expect Saks' stock price to rise to $\$ 15$ per share. By a year from today (11/12/13), you expect Saks’ stock price to fall back to $\$ 11$ per share.

Using the following information, set up the equations and plug in as many numbers as possible to use the Black-Scholes option pricing model to value the option you are planning buy today.

Between now and:

Standard deviation of returns on:	$\underline{1 / 18 / 13}$		$\underline{2 / 15 / 13}$
Saks' assets	18.2%		$\underline{11 / 12 / 13}$
Saks' stock	39.4%	40.4%	
Saks' bonds	4.5%	$4.1 .3 \%$	
An equivalent put	45.6%	52.5%	54.8%
This call	39.0%	41.0%	44.2%
Annualized return on:	$\underline{1 / 17 / 13}$	$\underline{2 / 14 / 13}$	$\underline{11 / 11 / 13}$
U.S. Treasuries (all < 1\%):	0.097%	0.120%	0.204%
Saks' bonds	0.35%	0.45%	0.50%

Wall Street Journal Questions are on the back of this page.

