Quiz B for 2:30 Class: 11/12/12

Name Key

Assume you are planning to buy a call on Saks 5th Avenue with an exercise price of \$9 that expires 67 days from today on 1/18/13. As soon as the call expires, you plan to buy a second call that expires 95 days from today on 2/15/13. Saks' stock price currently equals \$10 per share. By 1/18/13, you expect Saks' stock price to rise to \$12 per share and by 2/15/13, you expect Saks' stock price to rise to \$15 per share. By a year from today (11/12/13), you expect Saks' stock price to fall back to \$11 per share.

Using the following information, set up the equations and plug in as many numbers as possible to use the Black-Scholes option pricing model to value this option.

	Between now and:		
	1/18/13	2/15/13	11/12/13
Standard deviation of returns on:			
Saks' assets	18.2%	19.4%	20.1%
Saks' stock	39.4%	40.4%	41.3%
Saks' bonds	4.5%	4.6%	4.8%
An equivalent put	45.6%	52.5%	54.4%
This call	39.0%	41.0%	44.2%
Annualized return on:			
U.S. Treasuries (all < 1%):	0.097%	0.120%	0.204%
Saks' bonds	0.35%	0.45%	0.50%

Wall Street Journal Questions are on the back of this page.

+5 (
$$d_1 = \frac{\ln (\frac{10}{804})}{394\sqrt{\frac{10}{304}}} + \frac{13}{394\sqrt{\frac{10}{304}}}$$
+5 ($\ell_1 = \frac{1}{394\sqrt{\frac{10}{304}}} + \frac{1}{2}$
+5 ($\ell_2 = \frac{1}{2} + \frac{1}{$