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Corporate Finance 

Chapter 21: Option Valuation 
 
I. The Binomial Option Pricing Model 

 

Intro: 

 

1. Goal: to be able to value options 

2. Basic approach: create portfolio of stock and risk-free bonds with same payoff as 

option 

3. Law of One Price: value of the option and portfolio must be the same 

4. How it will help: can use current market prices for stock and risk-free bonds to value 

options 

 

Note: Analysis is for an option on one share of stock. 

 

=> if want to value an option on X shares, multiply results by X. 

 

A. Two-State Single-Period Model 

 

Note: will start with very simple case of only one period and only two possible stock 

prices a year from today 

 

1. Reasons for starting with such unrealistic assumptions: 

 

1) easier placer to start than Black-Scholes Option Pricing Model (BSOPM) 

 

=> able to build some intuition about what determines option values 

=> possible to see how model is derived without an understanding of stochastic 

calculus (needed for BSOPM) 

 

2) model works pretty well for very short time horizons 

 

2. Definitions 

 

S = current stock price 

Su = “up” stock price next period 

Sd = “down” stock price next period 

rf = risk-free interest rate 

K = strike price of option 

Cu = value of option if stock goes up 

Cd = value of option if stock goes down 

 = number of shares purchase to create replicating portfolio 

B = investment in risk-free bonds to create replicating portfolio 
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3. Creating a replicating portfolio 

 

Key => want payoff on replicating portfolio at t = 1 to equal payoff on call at t = 1 if 

the stock price rises or if it falls 

 

Su + (1+rf)B = Cu (21.4a) 

Sd + (1+rf)B = Cd (21.4b) 

 

=> assume know everything except  and B 

=> two equations and two unknowns ( and B) 
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1
 (21.5b) 

 

=> replicating portfolio: buy  shares and invest B in risk-free bonds 

 

Note: see Chapter 21 Supplement for steps 

 

Q: What is value of call? 

 

=> same as replicating portfolio 

 

C = S + B (21.6) 
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Ex. Assume a stock currently worth $19 will be worth either $26 or $16 next period. 

What is the value of a call with a $15 strike price if the risk free rate is 5%? 

 

Key => create binomial tree with possible payoffs for call and stock 

 

 

Figure 1 

 

Note: In figure, start with black, solve for blue 

 
 

Video 

 

Using 21.5a: 1
1626

111












du

du

SS

CC
Δ  

Using 21.5b: 
 

285714
051

1161

1
.

.r

ΔSC
B

f

dd 






  

 

=> to create replicating portfolio, short-sell $14.2857 of Treasuries today and buy 

1 share 

 

Check of payoff on portfolio at t = 1: 

 

If S = 26: 26(1) + (1.05)(-14.2857) =  26 – 15 = 11 = Cu 

If S = 16: 16(1) + (1.05)(-14.2857) = 16 – 15 = 1 = Cd 

 

Value of call today must equal cost to build portfolio today 

=> C = S + B = 19(1) – 14.2857 = 4.71 (equation 21.6) 

 

Note: Worth more than if expires now (or if exercise) = max(19-15,0) = 4 

 

  

t=0 t=1 

Su = 26 
S = 19 Cu = 11 
K = 15 Portfolio = 1(26) - 14.2857(1.05) = 11 
rf=.05 
 Sd = 16 
B = -14.2857 Cd = 1 
Cost of portfolio = 4.71 Portfolio = 1(16) - 14.2857(1.05) = 1 
        = 19(1) - 14.2857 
C = 4.71 

http://www.showme.com/sh/?h=IbjmxKC
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4. An Alternative Approach to the Binomial Model 

 

Keys:  

 

1) stock has a variable payoff  

=> use stock to duplicate the difference between the high and low call payoffs 

 

2) bonds have a fixed payoff 

=> use bonds to adjust of the total payoff higher or lower (to match option) 

 

Note: Use same example: Assume a stock currently worth $19 will be worth either 

$26 or $16 next period. What is the value of a call with a $15 strike price if the 

risk free rate is 5%? 

 

1) Creating differences in portfolio payoffs when stock is high rather than low 

 

a) difference between payoff on call when stock is high rather  than low = $10 

= 11 – 1  

 

b) difference between high and low payoff on stock = $10 = 26 – 16 

 

=> need an entire share of stock to duplicate the difference in payoffs on the 

call 

 

=>  = 1 

 

2) Matching level of payoffs 

 

Key: At t = 1, need $11 if S = $26 and $1 if S = $16 

=> replicating portfolio (which has one share) pays $26 or $16 

=> need to get rid of $15 at t = 1 

 

Q: What kind of transaction today will required an outflow of $15 next 

period? 

 

=> short-sell Treasuries today that mature for $15 next period 

=> short-sell Treasuries worth 
051

15

.
 = $14.2857 

Q: How does this get rid of $15 next period? 
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3) Summary:  

 

a) Replicating portfolio: short-sell Treasuries worth $14.2857 and buy 1 

share 

 

b) Payoff on replicating portfolio at t = 1: 

If S = $26: 11 = 26 – 15 = what left from stock after buy to cover 

Treasuries 

If S = $16: 1 = 16 – 15 = what left from stock after buy to cover 

Treasuries 

c) Cost of portfolio = 19 – 14.2857 = 4.71 

d) Same results as when plugged numbers into the equations 

 

Q: Why does this have to be the price of the call? 

 

Ex. Assume a stock currently worth $19 will be worth either $26 or $16 next period. 

What is the value of a call with a $20 strike price if the risk free rate is 5%? 

 

Q: Is the call worth more or less than if the strike price is $15? 

 

Figure 2 

 

Note: In figure, start with black, solve for blue 

 

 
Video 

 

  

t=0 t=1 

Su = 26 
S = 19 Cu = 6 
K = 20 Portfolio = .6(26) - 9.1429(1.05) = 6 
rf=.05 
 Sd = 16 
B = -9.1429 Cd = 0 
Cost of portfolio = 2.26 Portfolio = .6(16) - 9.1429(1.05) = 0 
        = 19(.6) - 9.1429 
C = 2.26 

http://www.showme.com/sh/?h=lsd0SwK
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1. Using the Equations 

 

Using 21.5a: 6
1626

06
.

SS

CC

du

du 








  

Using 21.5b: 
 

14299
051

6160

1
.

.

.

r

SC
B

f

dd 






  

 

=> short-sell Treasuries worth $9.1429 and buy .6 of a share 

 

Check of payoff on portfolio at t = 1: 

 

If S = 26: 26(.6) + (1.05)(-9.1429) = 15.6 – 9.6 = 6 = Cu 

If S = 16: 16(.6) + (1.05)(-9.1429) = 9.6 – 9.6 = 0 = Cd 

 

Value of call today using 21.6: C = S + B = 19(.6) – 9.1429 = 2.26 

 

Notes:  

 

1) Value if expires today = max (19-20,0) = 0 

2) Value of call if K = 20 ($2.26) is less than if K = 15 ($4.71) 

 

2. Alternative Approach 

 

=> stock will be worth $16 or $26 

 

1) Creating differences in the portfolio payoffs when stock is high rather than low 

 

a) difference between payoff on call when stock is high rather  than low = $6 

= 6 – 0   

 

b) difference between high and low payoff on stock = $10 = 26 – 16 

 

=> portfolio need only 
10

6
 of variation in payoff of stock 

=> need 
10

6
 of share 

 

=>  = .6 

 

Check of difference in payoffs on portfolio at t=1 if  = .6: 

 

If S = $26: .6(26) = 15.6 

If S = $16: .6(16) = 9.6 

 

=> Difference = 15.6 – 9.6 = 6 
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2) Matching the level of portfolio payoffs 

 

Key: At t = 1, need $6 (if stock = $26) or $0 (if stock = $16) 

 

=> replicating portfolio (if only include the .6 shares) pays $15.6 or $9.6 

 

=> need to get rid of $9.6 

 

=> short-sell Treasures today that mature for $9.6 next period 

 

=> short-sell Treasuries today worth 
051

69

.

.
 = $9.1429 

 

Q: How does this get rid of $9.60 next period? 

 

3) Summary:  

 

a) Replicating portfolio: short-sell Treasuries worth $9.1429 and buy 0.6 

shares 

 

b) Payoff on portfolio at t = 1: 

 

If S = $26: 6 = .6(26) – 9.6  = what left from stock after buy to cover 

Treasuries 

If S = $16: 0 = .6(16) – 9.6 = what left from stock after buy to cover 

Treasuries 

 

c) Cost of portfolio = .6(19) – 9.1429 = 11.4 – 9.1429 = 2.26 

=> price of call must also be $2.26 

 

d) Same results as when plugged numbers into the equations 
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Ex. Assume a stock currently worth $19 will be worth either $26 or $16 next period. 

What is the value of a put with a $20 strike price if the risk free rate is 5%? 

 

Key: let Cu and Cd be payoff on put when stock price is up and down (respectively). 

 

=> if you prefer to write them as Pu and Pd feel free to do so. 

 

Figure 3 

 

Note: In figure, start with black, solve for blue 

 

 
Video 

 

1. Using the Equations 

 

Using 21.5a: 40
1626

40
.-

-

SS

CC

du

du 






  

Using 21.5b: 
 

90489
051

40164

1
.

.

.

r

SC
B

f

dd 






  

 

=> buy bond for $9.9048 and short-sell 0.4 of a share 

 

Check of payoff on portfolio at t = 1: 

 

If S = $26: 26(-.4) + (1.05)(9.9048) = – 10.4 + 10.4 = 0 = Cu 

If S = $16: 16(-.4) + (1.05)(9.9048) = – 6.4 + 10.4 = 4 = Cd 

 

Using 21.6:   305290489419 ...Β SΔ PC   

 

Note: value if the put expires now = max(20-19,0) = 1 

 

  

t=0 t=1 

Su = 26 
S = 19 Pu = 0 
K = 20 Portfolio = -.4(26) + 9.9048(1.05) = 0 
rf=.05 
 Sd = 16 
B = 9.0948 Pd = 4 
Cost of portfolio = 2.305 Portfolio = -.4(16) + 9.9048(1.05) = 4 
        = 19(-.4) + 9.9048 
P = C = 2.305 

http://www.showme.com/sh/?h=0W4cDeC
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2. Alternative Approach 

 

Note: Stock can end up at $16 or $26 

 

1) Creating differences payoffs when stock is high rather than low 

 

a) difference between payoff on put when stock is high rather  than low = – $4 

= 0 – 4  

 

b) difference between high and low payoff on stock = $10 = 26 – 16 

 

=> when stock is $10 higher, portfolio payoff needs to be $4 lower 

 

Q: What kind of transaction today will lead to a $4 smaller payoff next 

period if the stock is $10 higher? 

 

=> short sell 0.4 shares 

 

Check of difference in payoff on portfolio at t = 1: 

 

If S = $26: -.4(26) = -10.4 

If S = $16: -.4(16) = -6.4 

 

=> difference in payoff = – 10.4  –  (– 6.4) = – 4 

 

2) Matching level of payoffs 

 

Key: At t = 1, need $0 (if stock = $26) or $4 (if stock = $16) 

 

=> replicating portfolio pays – $10.4 or  – $6.4 

 

=> always $10.4 too little 

=> need to add $10.4 

 

=> buy bond today that matures next year for $10.4 

=> cost of bond = 
051

410

.

.
 = $9.9048 

 

  



Chapter 21: Option Valuation-10 

Corporate Finance 

3) Summary:  

 

a) Replicating portfolio: short-sell 0.4 shares and invest $9.9048 in 

Treasuries 

b) Payoff on portfolio at t = 1: 

If S = $26: 0 = -.4(26) + 10.4 = what is left from payoff on Treasuries 

after repurchase stock 

If S = $16: 4 = -.4(16) + 10.4 = what left from payoff on Treasuries 

after repurchase stock 

c) Cost of portfolio = 9.9048 - .4(19) = 9.9048 – 7.6 = 2.305 

=> price of put must also be $2.305 

d) Same results as when plugged numbers into the equations 

 

Q: What is the value of the put if K = 15? 

 

=> zero value since will never be exercised. 

 

B. A Multiperiod Model 

 

1. Valuing options 

 

=> beginning period, two possible states 

=> next period, two possible states from each of these states 

=> etc. 

 

Key to solving: start at end of tree and work back to present 
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Ex. Assume that a stock with a current price of $98 will either increase by 10% or 

decrease by 5% for each of the next 2 years. If the risk-free rate is 6%, what is the 

value of a call with a $100 strike price? 

 

=> possible stock prices at t=1: 

 

107.80 = 98(1.1)  

93.10 = 98(.95) 

 

=> possible stock prices at t=2:  

 

118.58 = 98(1.1)2 

102.41 = 98(1.1) (.95) =98(.95) (1.1) 

88.445 = 98(.95)2 

 

=> possible call values at t=2: 

 

S = 118.58: 18.58 = max(118.58-100,0) 

S = 102.41: 2.41 = max(102.41-100,0) 

S = 88.445: 0 = max(88.445-100,0) 

 

 

 

0 1 

S=98 

K=100 

rf=.06 

= 

B= 

C= 

Su=107.80 

u= 

Bu= 

Cu= 

 

Sd=93.10 

d= 

Bd= 

Cd= 

 

Suu=118.58 

Cuu = 18.58 

Sdd=88.445 

Cdd = 0 

2 

Sdu =Sud=102.41 

Cdu= Cud =2.41 

 
 

du

du

SS

CC




  (21.5a) 

f

dd

r

SC
B






1
 (21.5b) 

C = S + B (21.6) 

 

=> Fill in , B, and C on tree for each of the following outcomes 
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1) t = 1 

 

If S = 107.80: 

 

1
4110258118

4125818







..

..
u  

 
3396294

061

141102412
.

.

..
Bu 


  

 

Q: How build replicating portfolio? 

 

Cu = 107.8(1) – 94.33962 = 13.46038 

 

If S = 93.10:  

 

172570
4458841102

0412
.

..

-.
d 


  

 
3993714

061

172570445880
.-

.

..
Bd 


  

 

Q: How build replicating portfolio? 

 

Cd = 93.1(.17257) – 14.39937 = 1.66730 

 

2) t = 0 (today):  

 

802250
10938107

667314603813
.

.-.

..



  

 
888968

061

80225019366731
.

.

...
B 


  

C = 98(.80225) – 68.8889 = 9.73167 

 

Note: To get my numbers, don’t round anything until the final answer. 
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2. Rebalancing 

 

Key => must rebalance portfolio at t = 1 since  and B change at t = 1 when stock 

price rises or falls 

 

t = 0: S = 98,  = 0.80225, B = -68.8889, C = 9.73167 

 

Cost of replicating portfolio = 98(.80225) – 68.8889 = 9.73167 

 

t = 1:  

 

If S = $107.80:  

 

=> value of replicating portfolio = 107.8(.80225) – 68.889(1.06) = 

86.48255 – 73.02234 = 13.46038 = C 

 

=> need  = 1 

 

=> change in  = 1 - .80225 = .19775 

 

=> number of shares need to buy/sell: buy .19775 

 

=> CF = – .19775 x 107.80 = – 21.3174 

 

Q: Where get the cash flow?=> short-sell Treasuries for $21.3174 

 

=> B: -68.889(1.06) - 21.3174 = -73.02223 - 21.3174 = - 94.33962 

 

If S = $93.10:  

 

=> value of replicating portfolio = 93.10(.80225) – 68.889(1.06) = 

74.68948 – 73.02234 = 1.66730 = C 

 

=> need  = 0.17257 

 

=> change in  = .17257 - .80225 = - .62968 

 

=> number of shares need to buy/sell: sell .62968 

 

=> CF  = +.62969 x 93.10 = +58.6232 

 

Q: What do with the cash flow?=> buy to cover bonds worth $58.6232 

 

=> B: - 68.8889(1.06) + 58.6232 = -73.02223 + 58.6232 = -14.39937 
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3. Payoffs on Replicating Portfolio at t = 2 

 

1) If S = $118.58 

 

Payoff on portfolio = 118.58(1) – 94.33962(1.06) = 118.58 – 100 = $18.58 = Cuu 

=> sell 1 share for $118.58 and buy to cover $100 of bonds. 

 

 

2) If S = $102.41 

 

a) If S was $107.80 at t = 1:  

 

Payoff on portfolio = 102.41(1) – 94.33962(1.06) =102.41 – 100 = $2.41 = 

Cud = Cdu 

=> sell share for 102.41 and buy to cover $100 of bonds 

 

b) if S was $93.10 at t = 1:  

 

Payoff on portfolio = 102.41(.17257) – 14.39937(1.06) = 17.6733 – 15.2633 = 

$2.41 = Cdd 

=> sell 0.17257 shares at $102.41/share and buy to cover $15.2633 of bonds 

 

3) If S = 88.445 

 

Payoff on portfolio = 88.445(.17257) – 14.39937(1.06) = 15.2633 – 15.2633 = 

$0 = C 

=> sell 0.17257 shares at $88.445/share and buy to cover $15.2633 of bonds 
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4. Put example 

 

Assume that a stock with a current price of $27 will either increase by $5 or decrease 

by $4 for each of the next 2 years. If the risk-free rate is 4%, what is the value of a 

put with a $30 strike price? 

 

a. Valuation of portfolio (and thus put) 

 

=> possible stock prices at t=1: 

 

32 = 27 + 5 

23 = 27 – 4 

 

=> possible stock prices at t=2:  

 

37 = 32 + 5 = 27 + 5 + 5 

28 = 32 – 4 = 23 + 5 = 27 + 5 – 4 = 27 – 4 + 5 

19 = 23 – 4 = 27 – 4 – 4  

 

=> possible put values at t=2: 

 

S = 37: P = 0 

S = 28: P = 2 

S = 19: P = 11 

 

 

0 1 

S=27 

K=30 

rf=.04 

= 

B= 

P= 

Su=32 

u= 

Bu= 

Pu= 

 

Sd=23 

d= 

Bd= 

Pd= 

 

Suu=37 

Puu = 0 

Sdd=19 

Pdd = 11 

2 

Sdu =Sud=28 

Pdu= Pud =2 

 

du

du

SS

CC




  (21.5a) 

f

dd

r

SC
B






1
 (21.5b) 

C = S + B (21.6) 
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=> Fill in , B, and C on tree for each of the following outcomes 

 

1) t = 1 

 

If S = 32: 

 

22222.0
2837

20





u  

 
90598.7

041

22222.0282





.
Bu  

 

Q: How build replicating portfolio? 

 

Pu = 32(–0.22222) + 7.90598 = 0.79487 

 

If S = 23:  

 

1
1928

112





d  

 
84615.28

041

11911





.
Bd  

 

Q: How build replicating portfolio? 

 

Pd = 23(–1) + 28.84615 = 5.84615 

 

2) t = 0 (today):  

 

56125.0
2332

84615.579487.0





  

 
03364.18

041

56125.02384615.5





.
B  

P = 27(–0.56125) + 18.03364 = 2.87979 

 

Note: To get my numbers, don’t round anything until the final answer. 
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b. Rebalancing of portfolios 

 

Note: To get my numbers, don’t round anything 

 

Key => must rebalance portfolio at t = 1 

 

t = 0: S = 27,  = –0.56125, B = 18.03364, P = 2.87979 

 

Cost of replicating portfolio = 27(–0.56125) + 18.03364 = 2.87979 

 

t = 1:  

 

If S = 32:  

 

=> value of replicating portfolio = 32(–0.56125) + 18.03364 (1.04) =  

–17.96011 + 18.75499 = 0.79487 = P 

 

=> need  = –0.22222 

 

=> change in  = –0.22222 – (–0.56125) = +0.33903 

 

=> number of shares need to buy/sell: buy to cover .33903 shares 

 

=> CF = – .33903(32) = – 10.849 

 

Q: Where get the cash flow?=> sell Treasuries for $10.849 

 

=> B: 18.03364(1.04) – 10.84902 = 18.75499 – 10.849 = 7.90598 

 

If S = 23:  

 

=> value of replicating portfolio = 23(–0.56125) + 18.03364 (1.04)  = 

–12.90883 +18.75499 = 5.84615 = P 

 

=> need  = –1 

 

=> change in  = –1 –  (–0.56125) = – 0.43875 

 

=> number of shares need to buy/sell: short-sell .43875 shares 

 

=> CF  = +.43875(23) = +10.09117 

 

Q: What do with the cash flow?=> buy bonds worth $10.09117 

 

=> B: 18.03364(1.04) +10.09117  = 28.84615 
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c. Payoffs on portfolios 

 

1) If S = $37 at t = 2  

 

Payoff on portfolio = 37(–0.22222) + 7.90598(1.04) = – 8.22222 + 8.22222 = 

$0 = Puu 

=> buy to cover 0.22222 shares with proceeds of bond 

 

2) If S = $28 at t = 2 

 

a) If S was $32 at t = 1:  

 

Payoff on portfolio = 28(–0.22222) + 7.90598(1.04) = – 6.22222 + 

8.22222 = $2 = Pud 

=> receive payoff from bonds and use all but $2 to buy to cover 0.22222 

shares 

 

b) if S was $23 at t = 1:  

 

Payoff on portfolio = 28(–1) + 28.84615(1.04) = – 28 + 30 = $2 = Pdu 

=> receive payoff from bonds and use all but $2 to buy to cover 1 share 

 

3) If S = 19 at t = 2 

 

Payoff on portfolio = 19(–1) + 28.84615(1.04) = – 19 + 30 = $11 = Pdd 

=> receive payoff from bonds and use all but $11 to buy to cover 1 share 

 

II. The Black-Scholes Option Pricing Model  

 

A. European Calls on Non-dividend Paying Stock 

 

     21 dNKPVdNSC   (21.7) 

 

where: 

 
2

ln

1

T

T

KPV

S

d














  (21.8a) 

 

Tdd  12  (21.8b) 

 

C = value of call 

S = current stock price 

N(d) = cumulative normal distribution of d 

=> probability that normally distributed variable is less than d 

=> Excel function normsdist(d) 
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PV(K) = present value (price) of a risk-free zero-coupon bond that pays K at the 

expiration of the option 

Note: use risk-free interest rate with maturity closest to expiration of option. 

 

T = years until option expires 



 = annual volatility (standard deviation) of the stock’s return over the life of the 

option 

 

Note:  is the only variable that must forecast 

 

Ex. You are considering purchasing a call that has a strike price of $37.50 and which 

expires 74 days from today. The current stock price is $40.75 but is expected to 

rise to $42 by the time the option expires. The volatility of returns on the firm’s 

stock over the past year has been 25% but is expected to be 21% over the next 74 

days and 19% over the next year. The returns on T-bills vary by maturity as 

follows: 2 days = 3.5%, 66 days = 4.8%; 72 days = 5.0%, 79 days = 5.1%. What 

is the Black-Scholes price for this call? 

 

21.σ   

T = 
365

74
 

PV(K) = 
 

13137
051

537
36574

.
.

.
  

 

(21.8a) 
 

2

ln

1

T

T

KPV

S

d














  

 

= 030891
2

094556

094556

093004

2

365

74
21

365

74
21

13137

7540
ln

.
.

.

.
.

.

.

.


















 

 

(21.8b) Tdd  12  

= 1.03089 - 
365

74
21.  = 0.936337 

 

Using Excel: N(d1) = .848704, N(d2) = .82545 
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Notes:  

 

1) calculate N(d) with Excel function “normsdist(d)” 

2) feel free to use copy of Excel table to approximate normsdist(d) 

 

Using tables, round d1 and d2 to two decimals 

N(d1) = N(1.03) = 0.84849 

N(d2) = N(0.94) = 0.82639 

=> close but not exactly the same 

 

(21.7)      21 dNKPVdNSC   

= 40.75(.848704) – (37.131)(.82545) = 3.935 = 3.94 

 

Note: If use tables, get C = 3.89 

 

B. European Puts on Non-Dividend-Paying Stock 

 

       12 11 dNSdNKPVP   (21.9) 

 

Ex. You are considering purchasing a put that has a strike price of $37.50 and which 

expires 74 days from today. The current stock price is $40.75 but is expected to rise 

to $42 by the time the option expires. The volatility of returns on the firm’s stock 

over the past year has been 25% but is expected to be 21% over the next 74 days and 

19% over the next year. The returns on T-bills vary by maturity as follows: 3 days = 

3.5%, 67 days = 4.8%; 73 days = 5.0%, 80 days = 5.1%. What is the Black-Scholes 

price for this put? 

 

Q: Will the put be more or less valuable than the call? 

 

=> S = 40.75, K = 37.50, PV(K) = 37.131, T = 74/365,  = .21, rf = .05, N(d1) = 

.848704, N(d2) = .82545 

 

P = 37.131(1-0.82545) – 40.75(1-0.848704) = 0.316 = 0.32 

 

Note: If use tables, P = 0.27 
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C. Dividend Paying Stocks 

 

Basic idea: subtract from the stock price the present value of dividends between now and 

expiration of option 

 

=> Sx = S – PV(Div) (21.10) 

 

where:  

S = current stock price 

PV(Div) = present value of dividends expected prior to expiration of option 

discounted at the required return on the stock 

 

=> plug Sx, into BSOPM 

 

Ex. You are considering purchasing a call that has a strike price of $37.50 and which 

expires 74 days from today. The current stock price is $40.75 but is expected to rise 

to $42 by the time the option expires. The volatility of returns on the firm’s stock 

over the past year has been 25% but is expected to be 21% over the next 74 days and 

19% over the next year. The returns on T-bills vary by maturity as follows: 3 days = 

3.5%, 67 days = 4.8%; 73 days = 5.0%, 80 days = 5.1%. What is the Black-Scholes 

price for this call if the stock will pay a dividend of $0.25 per share 30 days from 

today and the required return on the stock is 11% per year? 

 

=> S = 40.75, K = 37.50, PV(K) = 37.131, T = 74/365,  = .21, rf = .05 
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d ; N(d1) = 0.83307; (0.83398 on Table) 

87181.
365

74
21.96637.02 d ; N(d2) = 0.80834; (0.80785 on Table) 

 

=> C = 40.502(0.83307) – 37.131(0.80834)  = 3.73 < 3.94 (value if no dividend 

paid) 

 

=> P = 37.131(1 – 0.80834) – 40.502(1 – 0.83307) = 0.36 > 0.32 (value if no 

dividend paid) 
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Notes:  

 

1) dividends reduce the value of calls but increase the value of puts 

2) If use tables, C = 3.78 and P = 0.41 

 

D. Standard Form of Black-Scholes 

 

Notes:  

1) as far as I know, the following version of BSOPM shows up everywhere except 

this book 

2) source: http://en.wikipedia.org/wiki/Black-Scholes 

3) to be consistent with book’s symbols, using N(d1) rather than (d1). 

4) you are not required to know this version of the model for this class 
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Notes:  

 

1) rf = risk-free rate expressed as effective rate 

2) r = risk-free rate expressed as an APR with continuous compounding 

3) use the following to convert between APRs and effective rates with continuous 

compounding: 

 

1 r
f er  

r = ln(1 + rf) 
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Ex. You are considering purchasing a call that has a strike price of $37.50 and which 

expires 74 days from today. The return on a 73-day T-bill (the closest maturity to the 

call) is 5% per year. The current stock price is $40.75 per share and the stock’s 

volatility is 21%. What is the Black-Scholes price for this call? 

 

Note: same as first Black-Scholes example. Call worth $3.94 and put worth $0.32. 

 

r = ln(1.05) = .04879 
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d ; N(d1) = 0.848704 

936337.0
365

74
21.03089.12 d ; N(d2) = 0.82545 

94.382545.050.37848704.075.40 365

74
04879.




eC  

 

    32.0848704.0175.4082545.150.37 365

75
04879.




eP  

=> same results as with form of model in the book 

 

E. Implied Volatility 

 

Basic idea: can solve for a stock’s volatility over the life of the option if know all other 

variables (including the value of the call) 

 

=> use goal seek in Excel, a TI-83, or trial and error 
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Ex. What is the implied volatility on a stock given the following information? The price 

of the call is $5.75 and the price of the stock on which the call is written is $45. The 

call expires 50 days from today and has a strike price of $40. The return on a 49-day 

T-bill (the closest maturity to the call) is 4% per year. 

 

Black-Scholes equations: 
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=> impossible to solve mathematically 

 

Use Excel 

 

=> using goal seek,  = .3588 
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F. The Replicating Portfolio 

 

1. Calls 

 

=> can compare Black-Scholes model to binomial model and draw conclusions about 

how to build a replicating portfolio in a Black-Scholes world 

 

C = S + B (21.6) 
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 = N(d1) (21.12a) 

B = -PV(K)N(d2) (21.12b) 

 

Ex. What is the replicating portfolio for a call given the following information? The 

call expires 155 days from today with a strike price of $25. The return on a 154-

day T-bill (closest to the expiration of the option) is 2.2%. The stock’s current 

price is $24 and the volatility of the stock over the next 155 days is estimated to 

be 33%.  
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 ; N(d1) = .4843 

 = 0.4843 

 

25440
365

155
3312 ..dd  ; N(d2) = .3996 

 

B = – 24.77(0.3996) = – 9.90 

 

=> can replicate call on one share of stock by: short-sell Treasuries worth $9.90 

and buying .4843 of a share 

 

Cost of replicating portfolio = cost of option = C = 24(.4843) – 9.90 = 11.62 – 

9.90 = 24(.4843) – 24.77(.3996) = $1.73 

 

=> buying $11.62 of stock for $1.73 

=> remaining $9.90 comes from short-selling Treasuries 
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Note: Replicating portfolio for call will have a long position in the stock and a short 

position in the bond 

 

=> a call is equivalent to a levered position in the stock 

=> from Chapter 11 we know that leverage increases risk 

=> a call is riskier than stock itself 

 

2. Puts 

 

=> comparing (21.6) and (21.9) 

 

C = S + B (21.6) 
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 = – [1 – N(d1)] (21.13a) 

B = PV(K)[1 – N(d2)] (21.13b) 

 

Ex. What is the replicating portfolio for the put in the previous example? 

 

S = 24, K = 25, T = 155/365,  = .33, rf = .022, PV(K) = 24.77, N(d1) = .4843, 

N(d2) = .3996, C = 1.73, P = 2.50 

 

 =  – (1 – 0.4843) = -0.5157 

B = 24.77(1 – 0.3996) = 14.8719 

 

=> can replicate put on one share by: short selling .5157 shares worth $12.3768 

and buying $14.8719 of risk-free bonds 

 

=> cost of replicating portfolio = 14.8719 - .5157(24) = 14.8719 – 12.3768 = 2.50 

 

 Note: the replicating portfolio for a put will have a short position in the stock and a 

long position in the bond (lending) 

 

=> if stock has positive beta, put’s beta will be negative 

 

III. Risk and Return of an Option 

 

Basic idea: beta of an option equals the beta of its replicating portfolio 
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Let: 

S = $ invested in stock to create an options replicating portfolio 

=> buy  shares at $S per share 

S = beta of stock 

B = $ invested in risk-free bonds to create an option’s replicating portfolio 

B = beta of risk-free bonds 

 

BSBBSSportfoliongreplilcatioption
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  since B =0 (21.17) 

 

Ex. Assume a call that expires 60 days from today has a strike price equal to the stock’s 

current price of $15. Assume also that the standard deviation of returns on the stock over 

the next 60 days is expected to be 30%, and that the risk-free rate over the next 59 days is 

4% per year. What is the option’s beta if the stock’s beta is 1.1? How does the beta 

change if the stock price rises to $20 or falls to $10? 

 

Key: calculate beta of equivalent portfolio of shares of stock and Treasuries 

 

=> equivalent portfolio: buy  shares and invest B in bonds 

 

21.12a:  = N(d1) 

21.12b: B = – PV(K)N(d2) 
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N(d1) = .54531; N(d2) = .496884 
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Beta of replicating portfolio:  

 

Investment in Stock = S = .54531(15) = 8.179665 

Investment in Treasuries = B = -14.9036(.496884) = – 7.40536 

Total investment = 8.179665 – 7.40536 = 0.7743 = C 

 

𝛽𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = (
8.179665

0.7743
) (1.1) + (

−7.40536

0.7743
) (0) = (10.564)(1.1) + (−9.464)0 =

11.62  
 

Use equation 21.17:  

 

=>  11
40536715545311

15545311
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..
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 = 10.564 (1.1) = 11.62 

 

=> if stock price = $20: 

 

=>  11
7664.14209934

209934
.

.

.
β

BΔS

ΔS
β SCall







 = 3.8944 (1.1) = 4.284 

 

Note: call is in the money and less risky 

 

=> if stock price = $10: 

 

=>  11
0062.0100006

100006
.

.

.
β

BΔS

ΔS
β SCall







 = 31.5864 (1.1) = 34.745 

 

Note: call is out of the money and more risky 

 

Note: as an option goes further out of the money, the magnitude (#) of 
BS

S




 rises 

 

=> the magnitude of the option’s beta rises 
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Ex. Assume a put has a strike price equal to the stock’s current price of $15. Assume also 

that standard deviation of returns on the stock over the life of the option is expected to 

be 30%, that the option expires in 60 days, and that the risk-free rate is 4% per year. 

What is the option’s beta if the stock’s beta is 1.1? 

 

Note: Same information as on the call example. 

 

=> N(d1) = .54531, N(d2) = .496884, PV(K) = 14.9036 

 

Soption
BS

S





  

 

Using equations 21.13a and 21.13b for the  and B for a put: 

21.13a (p. 18):  = – [1–N(d1)] = – [1 – 0.54531] = – 0.45469 

21.13b (p. 18): B = PV(K)[1 – N(d2)] = 14.9036[1 – 0.496884] = 7.49824 

 

Beta of replicating portfolio:  

 

Investment in Stock = S = -0.45469(15) = -6.82035 

Investment in Treasuries = B = 14.9036(1 – 0.496884)  = 7.49824 

Total investment = – 6.82035 + 7.49824 = 0.67789 = P 

 

𝛽𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = (
−6.82035

0.67789
) (1.1) + (

7.49824

0.67789
) (0) = (−10.06)(1.1) + (11.06)0 =

−11.07  
 

Using 21.17 (p. 20): 
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Note: if stock price is: 

 

$20 (out of money):  
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$10 (in the money): 
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IV. Beta of a Firm’s Assets and Risky Debt 

 

Basic idea: Can combine: 

1) equation 21.17 (Beta of an option) 

2) the idea that an option is equivalent to a portfolio of stocks and risk-free bonds and 

3) the idea that stock is essentially a call on the firm’s assets  

 

Let:  

 

D = beta of firm’s risky debt 

 assets sfirm' of betaequity unlevered sfirm' of beta U  

E = beta of firm’s levered equity 

 = N(d1) when calculate the value of the firm’s stock as a call on the firm’s assets 

A = market value of the firm’s assets 

D = market value of the firm’s debt 

E = market value of the firm’s equity 
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where:  
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Note: derivations of 21.20 and 21.21 in supplement on web 
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Ex. Assume that the market value of firm’s stock is $100 million and that the beta of the 

firm’s stock is 1.3. Assume also that the firm has issued zero-coupon debt that matures 5 

years from today for $90 million and that the market value of this debt is $60 million. 

Assume also that the risk-free rate is 5%. What is the beta of the firm’s assets and of the 

firm’s debt? 

 

Notes:  

 

1) Viewing equity as a call on the firm’s assets with a strike price of $90 million 

(the amount owed the bondholders at maturity in 5 years).  

2) When using the Black-Scholes model, we discount the strike price (K) at the 

risk-free rate 

3) To solve for , must: 

a) find  that causes BSOPM value of stock to equal current market value 

b) determine  using this 

 

=> A = 100 + 60 = 160,  

PV(K) = 
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=> E = 100 = 160 x N(d1) – 70.5174 x N(d2) 

=> solve for  that solves for E = 100 

 

Using solver in Excel: is .4313, d1 = 1.33175, N(d1) = 0.90853, d2 = 0.36732, N(d2) 

= 0.64331 
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