Chapter 21: Option Valuation

I. The Binomial Option Pricing Model

Intro:

1. Goal: to be able to value options
2. Basic approach: create portfolio of stock and risk-free bonds with same payoff as option
3. Law of One Price: value of the option and portfolio must be the same
4. How it will help: can use current market prices for stock and risk-free bonds to value options

Note: Analysis is for an option on one share of stock.
=> if want to value an option on X shares, multiply results by X .

A. Two-State Single-Period Model

Note: will start with very simple case of only one period and only two possible stock prices a year from today

1. Reasons for starting with such unrealistic assumptions:
1) easier placer to start than Black-Scholes Option Pricing Model (BSOPM)
=> able to build some intuition about what determines option values
=> possible to see how model is derived without an understanding of stochastic calculus (needed for BSOPM)
2) model works pretty well for very short time horizons
2. Definitions
$\mathrm{S}=$ current stock price
$S_{u}=$ "up" stock price next period
$\mathrm{S}_{\mathrm{d}}=$ "down" stock price next period
$\mathrm{r}_{\mathrm{f}}=$ risk-free interest rate
$\mathrm{K}=$ strike price of option
$\mathrm{C}_{\mathrm{u}}=$ value of option if stock goes up
$\mathrm{C}_{\mathrm{d}}=$ value of option if stock goes down
$\Delta=$ number of shares purchase to create replicating portfolio
$\mathrm{B}=$ investment in risk-free bonds to create replicating portfolio

3. Creating a replicating portfolio

Key $=>$ want payoff on replicating portfolio at $t=1$ to equal payoff on call at $t=1$ if the stock price rises or if it falls
$\mathrm{S}_{\mathrm{u}} \Delta+\left(1+\mathrm{r}_{\mathrm{f}}\right) \mathrm{B}=\mathrm{C}_{\mathrm{u}}$
$\mathrm{S}_{\mathrm{d}} \Delta+\left(1+\mathrm{r}_{\mathrm{f}}\right) \mathrm{B}=\mathrm{C}_{\mathrm{d}}$
=> assume know everything except Δ and B
$=>$ two equations and two unknowns (Δ and B)

$$
\begin{equation*}
\Delta=\frac{C_{u}-C_{d}}{S_{u}-S_{d}} \tag{21.5a}
\end{equation*}
$$

$B=\frac{C_{d}-S_{d} \Delta}{1+r_{f}}$
=> replicating portfolio: buy Δ shares and invest B in risk-free bonds
Note: see Chapter 21 Supplement for steps
Q: What is value of call?
=> same as replicating portfolio
$\mathrm{C}=\mathrm{S} \Delta+\mathrm{B}$

Ex. Assume a stock currently worth $\$ 19$ will be worth either $\$ 26$ or $\$ 16$ next period. What is the value of a call with a $\$ 15$ strike price if the risk free rate is 5% ?

Key => create binomial tree with possible payoffs for call and stock

Figure 1

Note: In figure, start with black, solve for blue

$\underline{\mathrm{t}=0}$	$\underline{\mathrm{t}=1}$
	$\mathrm{Su}=26$
$\mathrm{S}=19$	$\mathrm{Cu}=11$
$\mathrm{K}=15$	Portfolio $=1(26)-14.2857(1.05)=11$
$\mathrm{rf}=.05$ -	
$\Delta=1$	$\mathrm{Sd}=16$
$B=-14.2857$	$\mathrm{Cd}=1$
Cost of portfolio $=4.71$	Portfolio $=1(16)-14.2857(1.05)=1$
= 19(1)-14.2857	
$\mathrm{C}=4.71$	

Video
Using 21.5a: $\Delta=\frac{C_{u}-C_{d}}{S_{u}-S_{d}}=\frac{11-1}{26-16}=1$
Using 21.5b: $B=\frac{C_{d}-S_{d} \Delta}{1+r_{f}}=\frac{1-16(1)}{1.05}=-14.2857$
=> to create replicating portfolio, short-sell $\$ 14.2857$ of Treasuries today and buy 1 share

Check of payoff on portfolio at $t=1$:
If $\mathrm{S}=26: 26(1)+(1.05)(-14.2857)=26-15=11=\mathrm{C}_{\mathrm{u}}$
If $S=16: 16(1)+(1.05)(-14.2857)=16-15=1=C_{d}$
Value of call today must equal cost to build portfolio today $\Rightarrow \mathrm{C}=\mathrm{S} \Delta+\mathrm{B}=19(1)-14.2857=4.71$ (equation 21.6)

Note: Worth more than if expires now (or if exercise $)=\max (19-15,0)=4$

4. An Alternative Approach to the Binomial Model

Keys:

1) stock has a variable payoff
=> use stock to duplicate the difference between the high and low call payoffs
2) bonds have a fixed payoff
=> use bonds to adjust of the total payoff higher or lower (to match option)
Note: Use same example: Assume a stock currently worth $\$ 19$ will be worth either $\$ 26$ or $\$ 16$ next period. What is the value of a call with a $\$ 15$ strike price if the risk free rate is 5% ?
3) Creating differences in portfolio payoffs when stock is high rather than low
a) difference between payoff on call when stock is high rather than low $=\$ 10$ $=11-1$
b) difference between high and low payoff on stock $=\$ 10=26-16$
=> need an entire share of stock to duplicate the difference in payoffs on the call
$\Rightarrow \Delta=1$
4) Matching level of payoffs

Key: At $\mathrm{t}=1$, need $\$ 11$ if $\mathrm{S}=\$ 26$ and $\$ 1$ if $\mathrm{S}=\$ 16$
=> replicating portfolio (which has one share) pays $\$ 26$ or $\$ 16$
\Rightarrow need to get rid of $\$ 15$ at $t=1$
Q: What kind of transaction today will required an outflow of $\$ 15$ next period?
=> short-sell Treasuries today that mature for $\$ 15$ next period
\Rightarrow short-sell Treasuries worth $\frac{15}{1.05}=\$ 14.2857$
Q : How does this get rid of $\$ 15$ next period?
3) Summary:
a) Replicating portfolio: short-sell Treasuries worth $\$ 14.2857$ and buy 1 share
b) Payoff on replicating portfolio at $\mathrm{t}=1$:

If $S=\$ 26: 11=26-15=$ what left from stock after buy to cover
Treasuries
If $S=\$ 16: 1=16-15=$ what left from stock after buy to cover
Treasuries
c) Cost of portfolio $=19-14.2857=4.71$
d) Same results as when plugged numbers into the equations

Q: Why does this have to be the price of the call?
Ex. Assume a stock currently worth $\$ 19$ will be worth either $\$ 26$ or $\$ 16$ next period. What is the value of a call with a $\$ 20$ strike price if the risk free rate is 5% ?

Q: Is the call worth more or less than if the strike price is $\$ 15$?

Figure 2

Note: In figure, start with black, solve for blue

$\underline{\mathrm{t}=0}$	$\underline{\mathrm{t}=1}$
	$\mathrm{Su=26}$
$\mathrm{~S}=19$	$\mathrm{Cu=6}$
$\mathrm{~K}=20$	Portfolio $=.6(26)-9.1429(1.05)=6$
$\mathrm{rf}=.05$	$\mathrm{Sd}=16$
$\Delta=.6$	$\mathrm{Cd}=0$
$\mathrm{~B}=-9.1429$	Portfolio $=.6(16)-9.1429(1.05)=0$
Cost of portfolio $=2.26$	
$\quad=19(.6)-9.1429$	

Video

1. Using the Equations

Using 21.5a: $\Delta=\frac{C_{u}-C_{d}}{S_{u}-S_{d}}=\frac{6-0}{26-16}=.6$
Using 21.5b: $B=\frac{C_{d}-S_{d} \Delta}{1+r_{f}}=\frac{0-16(.6)}{1.05}=-9.1429$
=> short-sell Treasuries worth $\$ 9.1429$ and buy .6 of a share
Check of payoff on portfolio at $\mathrm{t}=1$:

$$
\text { If } S=26: 26(.6)+(1.05)(-9.1429)=15.6-9.6=6=C_{u}
$$

If $S=16: 16(.6)+(1.05)(-9.1429)=9.6-9.6=0=C_{d}$
Value of call today using 21.6: $\mathrm{C}=\mathrm{S} \Delta+\mathrm{B}=19(.6)-9.1429=2.26$
Notes:

1) Value if expires today $=\max (19-20,0)=0$
2) Value of call if $K=20(\$ 2.26)$ is less than if $K=15(\$ 4.71)$
2. Alternative Approach
=> stock will be worth $\$ 16$ or $\$ 26$
1) Creating differences in the portfolio payoffs when stock is high rather than low
a) difference between payoff on call when stock is high rather than low $=\$ 6$ $=6-0$
b) difference between high and low payoff on stock $=\$ 10=26-16$

$$
\begin{aligned}
& \Rightarrow \text { portfolio need only } \frac{6}{10} \text { of variation in payoff of stock } \\
& \Rightarrow \text { need } \frac{6}{10} \text { of share } \\
& \Rightarrow \Delta=.6
\end{aligned}
$$

Check of difference in payoffs on portfolio at $\mathrm{t}=1$ if $\Delta=.6$:

$$
\begin{aligned}
& \text { If } S=\$ 26: .6(26)=15.6 \\
& \text { If } S=\$ 16: .6(16)=9.6 \\
& =>\text { Difference }=15.6-9.6=6
\end{aligned}
$$

2) Matching the level of portfolio payoffs

Key: At $t=1$, need $\$ 6$ (if stock $=\$ 26$) or $\$ 0($ if stock $=\$ 16)$
=> replicating portfolio (if only include the .6 shares) pays $\$ 15.6$ or $\$ 9.6$
=> need to get rid of $\$ 9.6$
=> short-sell Treasures today that mature for $\$ 9.6$ next period
=> short-sell Treasuries today worth $\frac{9.6}{1.05}=\$ 9.1429$
Q: How does this get rid of $\$ 9.60$ next period?
3) Summary:
a) Replicating portfolio: short-sell Treasuries worth $\$ 9.1429$ and buy 0.6 shares
b) Payoff on portfolio at $t=1$:

If $S=\$ 26: 6=.6(26)-9.6=$ what left from stock after buy to cover Treasuries If $S=\$ 16: 0=.6(16)-9.6=$ what left from stock after buy to cover Treasuries
c) Cost of portfolio $=.6(19)-9.1429=11.4-9.1429=2.26$
=> price of call must also be $\$ 2.26$
d) Same results as when plugged numbers into the equations

Ex. Assume a stock currently worth $\$ 19$ will be worth either $\$ 26$ or $\$ 16$ next period.
What is the value of a put with a $\$ 20$ strike price if the risk free rate is 5% ?
Key: let C_{u} and C_{d} be payoff on put when stock price is up and down (respectively).
=> if you prefer to write them as P_{u} and P_{d} feel free to do so.

Figure 3

Note: In figure, start with black, solve for blue

$\underline{\mathrm{t}=0}$	$\underline{\mathrm{t}=1}$
	$\mathrm{Su}=26$
$\mathrm{~S}=19$	$\mathrm{Pu}=0$
$\mathrm{~K}=20$	Portfolio $=-.4(26)+9.9048(1.05)=0$
$\mathrm{rf}=.05$	$\mathrm{Sd}=16$
$=-0.4$ $\mathrm{~B}=9.0948$ Cost of portfolio $=2.305$ $\quad=19(-.4)+9.9048$	Pd $=4$
$\mathrm{P}=\mathrm{C}=2.305$	Portfolio $=-.4(16)+9.9048(1.05)=4$

Video

1. Using the Equations

Using 21.5a: $\Delta=\frac{C_{u}-C_{d}}{S_{u}-S_{d}}=\frac{0-4}{26-16}=-0.4$
Using 21.5b: $B=\frac{C_{d}-S_{d} \Delta}{1+r_{f}}=\frac{4-16(-0.4)}{1.05}=9.9048$
=> buy bond for $\$ 9.9048$ and short-sell 0.4 of a share
Check of payoff on portfolio at $t=1$:

$$
\begin{aligned}
& \text { If S }=\$ 26: 26(-.4)+(1.05)(9.9048)=-10.4+10.4=0=C_{u} \\
& \text { If } S=\$ 16: 16(-.4)+(1.05)(9.9048)=-6.4+10.4=4=C_{d}
\end{aligned}
$$

Using 21.6: $C=P=S \Delta+B=19(-.4)+9.9048=2.305$
Note: value if the put expires now $=\max (20-19,0)=1$

2. Alternative Approach

Note: Stock can end up at $\$ 16$ or $\$ 26$

1) Creating differences payoffs when stock is high rather than low
a) difference between payoff on put when stock is high rather than low $=-\$ 4$ $=0-4$
b) difference between high and low payoff on stock $=\$ 10=26-16$ => when stock is $\$ 10$ higher, portfolio payoff needs to be $\$ 4$ lower Q: What kind of transaction today will lead to a $\$ 4$ smaller payoff next period if the stock is $\$ 10$ higher?
=> short sell 0.4 shares
Check of difference in payoff on portfolio at $\mathrm{t}=1$:

$$
\begin{aligned}
& \text { If } S=\$ 26:-.4(26)=-10.4 \\
& \text { If } S=\$ 16:-.4(16)=-6.4 \\
& \Rightarrow \text { difference in payoff }=-10.4-(-6.4)=-4
\end{aligned}
$$

2) Matching level of payoffs

Key: At $\mathrm{t}=1$, need $\$ 0($ if stock $=\$ 26)$ or $\$ 4$ (if stock $=\$ 16$)
=> replicating portfolio pays $-\$ 10.4$ or $-\$ 6.4$
=> always $\$ 10.4$ too little
\Rightarrow need to add $\$ 10.4$
=> buy bond today that matures next year for $\$ 10.4$
\Rightarrow cost of bond $=\frac{10.4}{1.05}=\$ 9.9048$
3) Summary:
a) Replicating portfolio: short-sell 0.4 shares and invest $\$ 9.9048$ in Treasuries
b) Payoff on portfolio at $\mathrm{t}=1$:

If $S=\$ 26: 0=-.4(26)+10.4=$ what is left from payoff on Treasuries after repurchase stock
If $S=\$ 16: 4=-.4(16)+10.4=$ what left from payoff on Treasuries after repurchase stock
c) Cost of portfolio $=9.9048-.4(19)=9.9048-7.6=2.305$
=> price of put must also be $\$ 2.305$
d) Same results as when plugged numbers into the equations

Q: What is the value of the put if $K=15$?
=> zero value since will never be exercised.

B. A Multiperiod Model

1. Valuing options
=> beginning period, two possible states
=> next period, two possible states from each of these states => etc.

Key to solving: start at end of tree and work back to present

Ex. Assume that a stock with a current price of $\$ 98$ will either increase by 10% or decrease by 5% for each of the next 2 years. If the risk-free rate is 6%, what is the value of a call with a $\$ 100$ strike price?
$=>$ possible stock prices at $\mathrm{t}=1$:

$$
107.80=98(1.1)
$$

$$
93.10=98(.95)
$$

=> possible stock prices at $\mathrm{t}=2$:

$$
\begin{aligned}
& 118.58=98(1.1)^{2} \\
& 102.41=98(1.1)(.95)=98(.95)(1.1) \\
& 88.445=98(.95)^{2}
\end{aligned}
$$

=> possible call values at $\mathrm{t}=2$:

$$
\begin{aligned}
& S=118.58: 18.58=\max (118.58-100,0) \\
& S=102.41: 2.41=\max (102.41-100,0) \\
& S=88.445: 0=\max (88.445-100,0)
\end{aligned}
$$

$$
\begin{align*}
\Delta & =\frac{C_{u}-C_{d}}{S_{u}-S_{d}} \tag{21.5a}\\
B & =\frac{C_{d}-S_{d} \Delta}{1+r_{f}} \tag{21.5b}\\
\mathrm{C} & =\mathrm{S} \Delta+\mathrm{B} \tag{21.6}
\end{align*}
$$

$=>$ Fill in Δ, B, and C on tree for each of the following outcomes

1) $t=1$

If $S=107.80$:

$$
\begin{aligned}
& \Delta_{u}=\frac{18.58-2.41}{118.58-102.41}=1 \\
& B_{u}=\frac{2.41-102.41(1)}{1.06}=-94.33962
\end{aligned}
$$

Q: How build replicating portfolio?

$$
C_{u}=107.8(1)-94.33962=13.46038
$$

If $S=93.10$:

$$
\begin{aligned}
\Delta_{d} & =\frac{2.41-0}{102.41-88.445}=0.17257 \\
B_{d} & =\frac{0-88.445(0.17257)}{1.06}=-14.39937
\end{aligned}
$$

Q: How build replicating portfolio?

$$
C_{d}=93.1(.17257)-14.39937=1.66730
$$

2) $t=0$ (today):

$$
\begin{aligned}
& \Delta=\frac{13.46038-1.6673}{107.8-93.10}=0.80225 \\
& B=\frac{1.6673-93.1(0.80225)}{1.06}=-68.8889 \\
& C=98(.80225)-68.8889=9.73167
\end{aligned}
$$

Note: To get my numbers, don't round anything until the final answer.
2. Rebalancing

Key $=>$ must rebalance portfolio at $\mathrm{t}=1$ since Δ and B change at $\mathrm{t}=1$ when stock price rises or falls
$\mathrm{t}=0: \mathrm{S}=98, \Delta=0.80225, \mathrm{~B}=-68.8889, \mathrm{C}=9.73167$
Cost of replicating portfolio $=98(.80225)-68.8889=9.73167$
$\mathrm{t}=1$:
If $S=\$ 107.80$:
\Rightarrow value of replicating portfolio $=107.8(.80225)-68.889(1.06)=$ $86.48255-73.02234=13.46038=\mathrm{C}$
$\Rightarrow>$ need $\Delta=1$
$\Rightarrow>$ change in $\Delta=1-.80225=.19775$
=> number of shares need to buy/sell: buy 19775
$\Rightarrow \mathrm{CF}=-.19775 \times 107.80=-21.3174$
Q: Where get the cash flow?=> short-sell Treasuries for $\$ 21.3174$
=> B: $-68.889(1.06)-21.3174=-73.02223-21.3174=-94.33962$
If $\mathrm{S}=\$ 93.10$:
\Rightarrow value of replicating portfolio $=93.10(.80225)-68.889(1.06)=$ $74.68948-73.02234=1.66730=\mathrm{C}$
\Rightarrow need $\Delta=0.17257$
$=>$ change in $\Delta=.17257-.80225=-.62968$
=> number of shares need to buy/sell: sell . 62968
$=>\mathrm{CF}=+.62969 \times 93.10=+58.6232$
Q: What do with the cash flow?=> buy to cover bonds worth $\$ 58.6232$
=> B: $-68.8889(1.06)+58.6232=-73.02223+58.6232=-14.39937$
3. Payoffs on Replicating Portfolio at $\mathrm{t}=2$

1) If $S=\$ 118.58$

Payoff on portfolio $=118.58(1)-94.33962(1.06)=118.58-100=\$ 18.58=C_{u u}$ => sell 1 share for $\$ 118.58$ and buy to cover $\$ 100$ of bonds.
2) If $S=\$ 102.41$
a) If S was $\$ 107.80$ at $\mathrm{t}=1$:

Payoff on portfolio $=102.41(1)-94.33962(1.06)=102.41-100=\$ 2.41=$ $\mathrm{C}_{\mathrm{ud}}=\mathrm{C}_{\mathrm{du}}$
=> sell share for 102.41 and buy to cover $\$ 100$ of bonds
b) if S was $\$ 93.10$ at $\mathrm{t}=1$:

Payoff on portfolio $=102.41(.17257)-14.39937(1.06)=17.6733-15.2633=$ $\$ 2.41=\mathrm{C}_{\mathrm{dd}}$
=> sell 0.17257 shares at $\$ 102.41 /$ share and buy to cover $\$ 15.2633$ of bonds
3) If $S=88.445$

Payoff on portfolio $=88.445(.17257)-14.39937(1.06)=15.2633-15.2633=$ $\$ 0=\mathrm{C}$
=> sell 0.17257 shares at $\$ 88.445 /$ share and buy to cover $\$ 15.2633$ of bonds

4. Put example

Assume that a stock with a current price of $\$ 27$ will either increase by $\$ 5$ or decrease by $\$ 4$ for each of the next 2 years. If the risk-free rate is 4%, what is the value of a put with a $\$ 30$ strike price?
a. Valuation of portfolio (and thus put)
$=>$ possible stock prices at $\mathrm{t}=1$:

$$
\begin{aligned}
& 32=27+5 \\
& 23=27-4
\end{aligned}
$$

$=>$ possible stock prices at $\mathrm{t}=2$:

$$
\begin{aligned}
& 37=32+5=27+5+5 \\
& 28=32-4=23+5=27+5-4=27-4+5 \\
& 19=23-4=27-4-4
\end{aligned}
$$

=> possible put values at $\mathrm{t}=2$:

$$
\begin{aligned}
& S=37: P=0 \\
& S=28: P=2 \\
& S=19: P=11
\end{aligned}
$$

$$
\begin{align*}
\Delta & =\frac{C_{u}-C_{d}}{S_{u}-S_{d}} \tag{21.5a}\\
B & =\frac{C_{d}-S_{d} \Delta}{1+r_{f}} \tag{21.5b}\\
\mathrm{C} & =\mathrm{S} \Delta+\mathrm{B} \tag{21.6}
\end{align*}
$$

$=>$ Fill in Δ, B, and C on tree for each of the following outcomes

1) $t=1$

If $S=32$:

$$
\begin{aligned}
\Delta_{u} & =\frac{0-2}{37-28}=-0.22222 \\
B_{u} & =\frac{2-28(-0.22222)}{1.04}=7.90598
\end{aligned}
$$

Q: How build replicating portfolio?

$$
P_{u}=32(-0.22222)+7.90598=0.79487
$$

If $S=23$:

$$
\begin{aligned}
& \Delta_{d}=\frac{2-11}{28-19}=-1 \\
& B_{d}=\frac{11-19(-1)}{1.04}=28.84615
\end{aligned}
$$

Q: How build replicating portfolio?

$$
P_{d}=23(-1)+28.84615=5.84615
$$

2) $t=0$ (today):
$\Delta=\frac{0.79487-5.84615}{32-23}=-0.56125$
$B=\frac{5.84615-23(-0.56125)}{1.04}=18.03364$
$P=27(-0.56125)+18.03364=2.87979$
Note: To get my numbers, don't round anything until the final answer.
b. Rebalancing of portfolios

Note: To get my numbers, don't round anything
Key $=>$ must rebalance portfolio at $\mathrm{t}=1$

$$
\mathrm{t}=0: \mathrm{S}=27, \Delta=-0.56125, \mathrm{~B}=18.03364, \mathrm{P}=2.87979
$$

Cost of replicating portfolio $=27(-0.56125)+18.03364=2.87979$
$\mathrm{t}=1$:
If $S=32$:
$\Rightarrow>$ value of replicating portfolio $=32(-0.56125)+18.03364(1.04)=$ $-17.96011+18.75499=0.79487=\mathrm{P}$
$=>$ need $\Delta=-0.22222$
\Rightarrow change in $\Delta=-0.22222-(-0.56125)=+0.33903$
=> number of shares need to buy/sell: buy to cover .33903 shares
$\Rightarrow \mathrm{CF}=-.33903(32)=-10.849$
Q: Where get the cash flow?=> sell Treasuries for $\$ 10.849$
=> B: $18.03364(1.04)-10.84902=18.75499-10.849=7.90598$
If $S=23$:
$=>$ value of replicating portfolio $=23(-0.56125)+18.03364(1.04)=$ $-12.90883+18.75499=5.84615=\mathrm{P}$
\Rightarrow need $\Delta=-1$
$=>$ change in $\Delta=-1-(-0.56125)=-0.43875$
=> number of shares need to buy/sell: short-sell .43875 shares
$=>\mathrm{CF}=+.43875(23)=+10.09117$
Q: What do with the cash flow?=> buy bonds worth $\$ 10.09117$
=> B: $18.03364(1.04)+10.09117=28.84615$
c. Payoffs on portfolios

1) If $\mathrm{S}=\$ 37$ at $\mathrm{t}=2$

$$
\begin{aligned}
& \text { Payoff on portfolio }=37(-0.22222)+7.90598(1.04)=-8.22222+8.22222= \\
& \quad \$ 0=P_{\text {uu }} \\
& =>\text { buy to cover } 0.22222 \text { shares with proceeds of bond }
\end{aligned}
$$

2) If $\mathrm{S}=\$ 28$ at $\mathrm{t}=2$
a) If S was $\$ 32$ at $\mathrm{t}=1$:

Payoff on portfolio $=28(-0.22222)+7.90598(1.04)=-6.22222+$ $8.22222=\$ 2=\mathrm{P}_{\text {ud }}$
$=>$ receive payoff from bonds and use all but $\$ 2$ to buy to cover 0.22222 shares
b) if S was $\$ 23$ at $t=1$:

Payoff on portfolio $=28(-1)+28.84615(1.04)=-28+30=\$ 2=\mathrm{P}_{\mathrm{du}}$ => receive payoff from bonds and use all but $\$ 2$ to buy to cover 1 share
3) If $\mathrm{S}=19$ at $\mathrm{t}=2$

$$
\text { Payoff on portfolio }=19(-1)+28.84615(1.04)=-19+30=\$ 11=\mathrm{P}_{\mathrm{dd}}
$$ $=>$ receive payoff from bonds and use all but $\$ 11$ to buy to cover 1 share

II. The Black-Scholes Option Pricing Model

A. European Calls on Non-dividend Paying Stock

$$
\begin{equation*}
C=S \times N\left(d_{1}\right)-P V(K) \times N\left(d_{2}\right) \tag{21.7}
\end{equation*}
$$

where:

$$
\begin{align*}
& d_{1}=\frac{\ln \left[\frac{S}{P V(K)}\right]}{\sigma \sqrt{T}}+\frac{\sigma \sqrt{T}}{2} \tag{21.8a}\\
& d_{2}=d_{1}-\sigma \sqrt{T} \tag{21.8b}
\end{align*}
$$

$\mathrm{C}=$ value of call
$\mathrm{S}=$ current stock price
$\mathrm{N}(\mathrm{d})=$ cumulative normal distribution of d
=> probability that normally distributed variable is less than d
=> Excel function normsdist(d)
$\mathrm{PV}(\mathrm{K})=$ present value (price) of a risk-free zero-coupon bond that pays K at the expiration of the option
Note: use risk-free interest rate with maturity closest to expiration of option.
$T=$ years until option expires
$\sigma=$ annual volatility (standard deviation) of the stock's return over the life of the option

Note: σ is the only variable that must forecast
Ex. You are considering purchasing a call that has a strike price of $\$ 37.50$ and which expires 74 days from today. The current stock price is $\$ 40.75$ but is expected to rise to $\$ 42$ by the time the option expires. The volatility of returns on the firm's stock over the past year has been 25% but is expected to be 21% over the next 74 days and 19% over the next year. The returns on T-bills vary by maturity as follows: 2 days $=3.5 \%, 66$ days $=4.8 \% ; 72$ days $=5.0 \%, 79$ days $=5.1 \%$. What is the Black-Scholes price for this call?

$$
\begin{aligned}
\sigma & =.21 \\
\mathrm{~T} & =\frac{74}{365}
\end{aligned}
$$

$\operatorname{PV}(\mathrm{K})=\frac{37.5}{(1.05)^{74 / 365}}=37.131$
(21.8a) $d_{1}=\frac{\ln \left[\frac{S}{P V(K)}\right]}{\sigma \sqrt{T}}+\frac{\sigma \sqrt{T}}{2}$

$$
=\frac{\ln \left(\frac{40.75}{37.131}\right)}{.21 \times \sqrt{\frac{74}{365}}}+\frac{.21 \times \sqrt{\frac{74}{365}}}{2}=\frac{.093004}{.094556}+\frac{.094556}{2}=1.03089
$$

(21.8b) $d_{2}=d_{1}-\sigma \sqrt{T}$

$$
=1.03089-.21 \times \sqrt{\frac{74}{365}}=0.936337
$$

Using Excel: $\mathrm{N}\left(\mathrm{d}_{1}\right)=.848704, \mathrm{~N}\left(\mathrm{~d}_{2}\right)=.82545$

Notes:

1) calculate $\mathrm{N}(\mathrm{d})$ with Excel function "normsdist(d)"
2) feel free to use copy of Excel table to approximate normsdist(d)

Using tables, round d_{1} and d_{2} to two decimals

$$
\begin{aligned}
& \mathrm{N}\left(\mathrm{~d}_{1}\right)=\mathrm{N}(1.03)=0.84849 \\
& \mathrm{~N}\left(\mathrm{~d}_{2}\right)=\mathrm{N}(0.94)=0.82639
\end{aligned}
$$

=> close but not exactly the same

$$
\begin{aligned}
& \text { (21.7) } C=S \times N\left(d_{1}\right)-P V(K) \times N\left(d_{2}\right) \\
& \quad=40.75(.848704)-(37.131)(.82545)=3.935=3.94
\end{aligned}
$$

Note: If use tables, get $\mathrm{C}=3.89$

B. European Puts on Non-Dividend-Paying Stock

$$
\begin{equation*}
P=P V(K)\left[1-N\left(d_{2}\right)\right]-S\left[1-N\left(d_{1}\right)\right] \tag{21.9}
\end{equation*}
$$

Ex. You are considering purchasing a put that has a strike price of $\$ 37.50$ and which expires 74 days from today. The current stock price is $\$ 40.75$ but is expected to rise to $\$ 42$ by the time the option expires. The volatility of returns on the firm's stock over the past year has been 25% but is expected to be 21% over the next 74 days and 19% over the next year. The returns on T-bills vary by maturity as follows: 3 days = $3.5 \%, 67$ days $=4.8 \% ; 73$ days $=5.0 \%, 80$ days $=5.1 \%$. What is the Black-Scholes price for this put?

Q: Will the put be more or less valuable than the call?
$=>\mathrm{S}=40.75, \mathrm{~K}=37.50, \mathrm{PV}(\mathrm{K})=37.131, \mathrm{~T}=74 / 365, \sigma=.21, \mathrm{r}_{\mathrm{f}}=.05, \mathrm{~N}\left(\mathrm{~d}_{1}\right)=$ $.848704, \mathrm{~N}\left(\mathrm{~d}_{2}\right)=.82545$
$\mathrm{P}=37.131(1-0.82545)-40.75(1-0.848704)=0.316=0.32$
Note: If use tables, $\mathrm{P}=0.27$

C. Dividend Paying Stocks

Basic idea: subtract from the stock price the present value of dividends between now and expiration of option

$$
\begin{equation*}
\Rightarrow S^{x}=S-P V(D i v) \tag{21.10}
\end{equation*}
$$

where:
$\mathrm{S}=$ current stock price
$\mathrm{PV}($ Div $)=$ present value of dividends expected prior to expiration of option discounted at the required return on the stock
=> plug S^{x}, into BSOPM

Ex. You are considering purchasing a call that has a strike price of $\$ 37.50$ and which expires 74 days from today. The current stock price is $\$ 40.75$ but is expected to rise to $\$ 42$ by the time the option expires. The volatility of returns on the firm's stock over the past year has been 25% but is expected to be 21% over the next 74 days and 19% over the next year. The returns on T-bills vary by maturity as follows: 3 days = $3.5 \%, 67$ days $=4.8 \% ; 73$ days $=5.0 \%, 80$ days $=5.1 \%$. What is the Black-Scholes price for this call if the stock will pay a dividend of $\$ 0.25$ per share 30 days from today and the required return on the stock is 11% per year?
$\Rightarrow \mathrm{S}=40.75, \mathrm{~K}=37.50, \mathrm{PV}(\mathrm{K})=37.131, \mathrm{~T}=74 / 365, \sigma=.21, \mathrm{r}_{\mathrm{f}}=.05$
$S^{x}=40.75-\frac{.25}{(1.11)^{30 / 365}}=40.502$

Option values

$$
\begin{aligned}
& d_{1}=\frac{\ln \left[\frac{40.502}{37.131}\right]}{.21 \sqrt{\frac{74}{365}}}+\frac{.21 \sqrt{\frac{74}{365}}}{2}=0.96637 ; \mathrm{N}\left(\mathrm{~d}_{1}\right)=0.83307 ;(0.83398 \text { on Table }) \\
& d_{2}=0.96637-.21 \sqrt{\frac{74}{365}}=.87181 ; \mathrm{N}\left(\mathrm{~d}_{2}\right)=0.80834 ;(0.80785 \text { on Table }) \\
& =>\mathrm{C}=40.502(0.83307)-37.131(0.80834)=3.73<3.94 \text { (value if no dividend } \\
& \text { paid) } \\
& =\ggg 37.131(1-0.80834)-40.502(1-0.83307)=0.36>0.32 \text { (value if no } \\
& \text { dividend paid) }
\end{aligned}
$$

Notes:

1) dividends reduce the value of calls but increase the value of puts
2) If use tables, $\mathrm{C}=3.78$ and $\mathrm{P}=0.41$
D. Standard Form of Black-Scholes

Notes:

1) as far as I know, the following version of BSOPM shows up everywhere except this book
2) source: http://en.wikipedia.org/wiki/Black-Scholes
3) to be consistent with book's symbols, using $N\left(d_{1}\right)$ rather than $\Phi\left(d_{1}\right)$.
4) you are not required to know this version of the model for this class

$$
\begin{gathered}
C=S \times N\left(d_{1}\right)-K \times e^{-r \times T} \times N\left(d_{2}\right) \\
d_{1}=\frac{\ln \left(\frac{S}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right) \times T}{\sigma \sqrt{T}} \\
d_{2}=d_{1}-\sigma \sqrt{T} \\
P=K \times e^{-r \times T} \times\left[1-N\left(d_{2}\right)\right]-S\left[1-N\left(d_{1}\right)\right]
\end{gathered}
$$

Notes:

1) $r_{f}=$ risk-free rate expressed as effective rate
2) $r=$ risk-free rate expressed as an APR with continuous compounding
3) use the following to convert between APRs and effective rates with continuous compounding:

$$
\begin{aligned}
& r_{f}=e^{r}-1 \\
& \mathrm{r}=\ln \left(1+\mathrm{r}_{\mathrm{f}}\right)
\end{aligned}
$$

Ex. You are considering purchasing a call that has a strike price of $\$ 37.50$ and which expires 74 days from today. The return on a 73 -day T-bill (the closest maturity to the call) is 5% per year. The current stock price is $\$ 40.75$ per share and the stock's volatility is 21%. What is the Black-Scholes price for this call?

Note: same as first Black-Scholes example. Call worth $\$ 3.94$ and put worth $\$ 0.32$.

$$
\begin{aligned}
& \mathrm{r}=\ln (1.05)=.04879 \\
& d_{1}=\frac{\ln \left(\frac{40.75}{37.50}\right)+\left(.04879+\frac{(.21)^{2}}{2}\right) \times \frac{74}{365}}{.21 \sqrt{\frac{74}{365}}}=1.03089 ; \mathrm{N}\left(\mathrm{~d}_{1}\right)=0.848704 \\
& d_{2}=1.03089-.21 \sqrt{\frac{74}{365}}=0.936337 ; \mathrm{N}\left(\mathrm{~d}_{2}\right)=0.82545 \\
& C=40.75 \times 0.848704-37.50 \times e^{-.04879 \times \frac{74}{365}} \times 0.82545=3.94 \\
& P=37.50 \times e^{-.04879} \frac{75}{365} \times(1-.82545)-40.75 \times(1-0.848704)=0.32 \\
& =>\text { same results as with form of model in the book }
\end{aligned}
$$

E. Implied Volatility

Basic idea: can solve for a stock's volatility over the life of the option if know all other variables (including the value of the call)
=> use goal seek in Excel, a TI-83, or trial and error

Ex. What is the implied volatility on a stock given the following information? The price of the call is $\$ 5.75$ and the price of the stock on which the call is written is $\$ 45$. The call expires 50 days from today and has a strike price of $\$ 40$. The return on a 49 -day T-bill (the closest maturity to the call) is 4% per year.

Black-Scholes equations:

$$
\begin{align*}
& C=S \times N\left(d_{1}\right)-P V(K) \times N\left(d_{2}\right) \tag{21.7}\\
& d_{1}=\frac{\ln \left[\frac{S}{P V(K)}\right]}{\sigma \sqrt{T}}+\frac{\sigma \sqrt{T}}{2} \tag{21.8a}\\
& d_{2}=d_{1}-\sigma \sqrt{T} \tag{21.8b}
\end{align*}
$$

$P V(K)=\frac{40}{(1.04)^{50 / 365}}=39.786$

$$
5.75=45 \times N\left(d_{1}\right)-39.786 \times N\left(d_{2}\right)
$$

$$
d_{1}=\frac{\ln \left[\frac{45}{39.786}\right]}{\sigma \sqrt{\frac{50}{365}}}+\frac{\sigma \sqrt{\frac{50}{365}}}{2}
$$

$$
d_{2}=d_{1}-\sigma \sqrt{\frac{50}{365}}
$$

=> impossible to solve mathematically
Use Excel
=> using goal seek, $\sigma=.3588$
F. The Replicating Portfolio

1. Calls

=> can compare Black-Scholes model to binomial model and draw conclusions about how to build a replicating portfolio in a Black-Scholes world
$\mathrm{C}=\mathrm{S} \Delta+\mathrm{B}$
$C=S \times N\left(d_{1}\right)-P V(K) \times N\left(d_{2}\right)$

$$
\begin{align*}
& \Delta=\mathrm{N}\left(\mathrm{~d}_{1}\right) \tag{21.12a}\\
& \mathrm{B}=-\mathrm{PV}(\mathrm{~K}) \mathrm{N}\left(\mathrm{~d}_{2}\right) \tag{21.12b}
\end{align*}
$$

Ex. What is the replicating portfolio for a call given the following information? The call expires 155 days from today with a strike price of $\$ 25$. The return on a 154day T-bill (closest to the expiration of the option) is 2.2%. The stock's current price is $\$ 24$ and the volatility of the stock over the next 155 days is estimated to be 33%.

$$
\begin{aligned}
& P V(K)=\frac{25}{(1.022)^{155 / 365}}=\$ 24.77 \\
& d_{1}=\frac{\ln \left(\frac{24}{24.77}\right)}{.33 \sqrt{\frac{155}{365}}}+\frac{.33 \sqrt{\frac{155}{365}}}{2}=-0.0393 ; \mathrm{N}\left(\mathrm{~d}_{1}\right)=.4843 \\
& \Delta=0.4843 \\
& d_{2}=d_{1}-.33 \sqrt{\frac{155}{365}}=-0.2544 ; \mathrm{N}\left(\mathrm{~d}_{2}\right)=.3996 \\
& B=-24.77(0.3996)=-9.90
\end{aligned}
$$

=> can replicate call on one share of stock by: short-sell Treasuries worth $\$ 9.90$ and buying . 4843 of a share

Cost of replicating portfolio $=$ cost of option $=\mathrm{C}=24(.4843)-9.90=11.62-$ $9.90=24(.4843)-24.77(.3996)=\$ 1.73$ => buying $\$ 11.62$ of stock for $\$ 1.73$
=> remaining $\$ 9.90$ comes from short-selling Treasuries

Note: Replicating portfolio for call will have a long position in the stock and a short position in the bond

> => a call is equivalent to a levered position in the stock
> => from Chapter 11 we know that leverage increases risk => a call is riskier than stock itself
2. Puts
=> comparing (21.6) and (21.9)

$$
\begin{equation*}
\mathrm{C}=\mathrm{S} \Delta+\mathrm{B} \tag{21.6}
\end{equation*}
$$

$P=P V(K)\left[1-N\left(d_{2}\right)\right]-S\left[1-N\left(d_{1}\right)\right]$
$\Delta=-\left[1-\mathrm{N}\left(\mathrm{d}_{1}\right)\right]$
$\mathrm{B}=\mathrm{PV}(\mathrm{K})\left[1-\mathrm{N}\left(\mathrm{d}_{2}\right)\right]$
Ex. What is the replicating portfolio for the put in the previous example?

$$
\begin{aligned}
& \mathrm{S}=24, \mathrm{~K}=25, \mathrm{~T}=155 / 365, \sigma=.33, \mathrm{r}_{\mathrm{f}}=.022, \mathrm{PV}(\mathrm{~K})=24.77, \mathrm{~N}\left(\mathrm{~d}_{1}\right)=.4843, \\
& \\
& \quad \mathrm{~N}\left(\mathrm{~d}_{2}\right)=.3996, \mathrm{C}=1.73, \mathrm{P}=2.50 \\
& \Delta=-(1-0.4843)=-0.5157 \\
& \mathrm{~B}=24.77(1-0.3996)=14.8719 \\
& \Rightarrow \text { can replicate put on one share by: short selling } .5157 \text { shares worth } \$ 12.3768 \\
& \quad \text { and buying } \$ 14.8719 \text { of risk-free bonds } \\
& \Rightarrow \text { cost of replicating portfolio }=14.8719-.5157(24)=14.8719-12.3768=2.50
\end{aligned}
$$

Note: the replicating portfolio for a put will have a short position in the stock and a
long position in the bond (lending)
=> if stock has positive beta, put's beta will be negative

III. Risk and Return of an Option

Basic idea: beta of an option equals the beta of its replicating portfolio

Let:
$\Delta \mathrm{S}=\$$ invested in stock to create an options replicating portfolio
$=>$ buy Δ shares at $\$ S$ per share
$\beta_{\mathrm{S}}=$ beta of stock
$\mathrm{B}=\$$ invested in risk-free bonds to create an option's replicating portfolio
$\beta_{B}=$ beta of risk-free bonds
$\beta_{\text {option }}=\beta_{\text {replilcatíg portfolio }}=x_{S} \beta_{S}+x_{B} \beta_{B}=\frac{\Delta S}{\Delta S+B} \beta_{S}+\frac{B}{\Delta S+B} \beta_{B}$
$\beta_{\text {option }}=\frac{\Delta S}{\Delta S+B} \beta_{S}$ since $\beta_{\mathrm{B}}=0$
Ex. Assume a call that expires 60 days from today has a strike price equal to the stock's current price of $\$ 15$. Assume also that the standard deviation of returns on the stock over the next 60 days is expected to be 30%, and that the risk-free rate over the next 59 days is 4% per year. What is the option's beta if the stock's beta is 1.1 ? How does the beta change if the stock price rises to $\$ 20$ or falls to $\$ 10$?

Key: calculate beta of equivalent portfolio of shares of stock and Treasuries
=> equivalent portfolio: buy Δ shares and invest B in bonds
21.12a: $\Delta=\mathrm{N}\left(\mathrm{d}_{1}\right)$
21.12b: $B=-P V(K) N\left(d_{2}\right)$
21.8a :d $d_{1}=\frac{\ln \left[\frac{S}{P V(K)}\right]}{\sigma \sqrt{T}}+\frac{\sigma \sqrt{T}}{2}$
21.8b: $d_{2}=d_{1}-\sigma \sqrt{T}$
$\operatorname{PV}(\mathrm{K})=\frac{15}{(1.04)^{60 / 365}}=14.9036$
$d_{1}=\frac{\ln \left(\frac{15}{14.9036}\right)}{.3 \times \sqrt{\frac{60}{365}}}+\frac{.3 \times \sqrt{\frac{60}{365}}}{2}=0.1138$
$d_{2}=0.1138-.3 \times \sqrt{\frac{60}{365}}=-0.00781$
$\mathrm{N}\left(\mathrm{d}_{1}\right)=.54531 ; \mathrm{N}\left(\mathrm{d}_{2}\right)=.496884$

Beta of replicating portfolio:
Investment in Stock $=\Delta \mathrm{S}=.54531(15)=8.179665$
Investment in Treasuries $=\mathrm{B}=-14.9036(.496884)=-7.40536$
Total investment $=8.179665-7.40536=0.7743=\mathrm{C}$

$$
\begin{aligned}
& \beta_{\text {portfolio }}=\left(\frac{8.179665}{0.7743}\right)(1.1)+\left(\frac{-7.40536}{0.7743}\right)(0)=(10.564)(1.1)+(-9.464) 0= \\
& 11.62
\end{aligned}
$$

Use equation 21.17:

$$
\Rightarrow \beta_{\text {Call }}=\frac{\Delta S}{\Delta S+B} \beta_{S}=\frac{.545311 \times 15}{.545311 \times 15-7.40536}(1.1)=10.564(1.1)=11.62
$$

$=>$ if stock price $=\$ 20$:

$$
\Rightarrow \beta_{\text {Call }}=\frac{\Delta S}{\Delta S+B} \beta_{S}=\frac{.9934 \times 20}{.9934 \times 20-14.7664}(1.1)=3.8944(1.1)=4.284
$$

Note: call is in the money and less risky
$=>$ if stock price $=\$ 10$:

$$
\Rightarrow \beta_{\text {Call }}=\frac{\Delta S}{\Delta S+B} \beta_{S}=\frac{.0006 \times 10}{.0006 \times 10-0.0062}(1.1)=31.5864(1.1)=34.745
$$

Note: call is out of the money and more risky
Note: as an option goes further out of the money, the magnitude (\#) of $\frac{\Delta S}{\Delta S+B}$ rises
$=>$ the magnitude of the option's beta rises

Ex. Assume a put has a strike price equal to the stock's current price of $\$ 15$. Assume also that standard deviation of returns on the stock over the life of the option is expected to be 30%, that the option expires in 60 days, and that the risk-free rate is 4% per year. What is the option's beta if the stock's beta is 1.1 ?

Note: Same information as on the call example.

$$
\begin{aligned}
& \Rightarrow \mathrm{N}\left(\mathrm{~d}_{1}\right)=.54531, \mathrm{~N}\left(\mathrm{~d}_{2}\right)=.496884, \mathrm{PV}(\mathrm{~K})=14.9036 \\
& \beta_{\text {option }}=\frac{\Delta S}{\Delta S+B} \beta_{S}
\end{aligned}
$$

Using equations 21.13a and 21.13 b for the Δ and B for a put:

$$
\begin{aligned}
& \text { 21.13a (p. 18): } \Delta=-\left[1-\mathrm{N}\left(\mathrm{~d}_{1}\right)\right]=-[1-0.54531]=-0.45469 \\
& 21.13 \mathrm{~b}\left(\text { p. 18): } \mathrm{B}=\mathrm{PV}(\mathrm{~K})\left[1-\mathrm{N}\left(\mathrm{~d}_{2}\right)\right]=14.9036[1-0.496884]=7.49824\right.
\end{aligned}
$$

Beta of replicating portfolio:
Investment in Stock $=\Delta S=-0.45469(15)=-6.82035$
Investment in Treasuries $=B=14.9036(1-0.496884)=7.49824$
Total investment $=-6.82035+7.49824=0.67789=\mathrm{P}$

$$
\begin{aligned}
& \beta_{\text {portfolio }}=\left(\frac{-6.82035}{0.67789}\right)(1.1)+\left(\frac{7.49824}{0.67789}\right)(0)=(-10.06)(1.1)+(11.06) 0= \\
& \quad-11.07
\end{aligned}
$$

Using 21.17 (p. 20):

$$
\beta_{P_{u t}}=\frac{\Delta S}{\Delta S+B} \beta_{S}=\left(\frac{-0.45469(15)}{-.45469(15)+7.49824}\right)(1.1)=\frac{-6.82035}{0.67789}(1.1)=-10.06(1.1)=-11.07
$$

Note: if stock price is:
\$20 (out of money):

$$
\beta_{\text {Put }}=\frac{\Delta S}{\Delta S+B} \beta_{S}=\left(\frac{-0.00659(20)}{-.00659(20)+0.137153}\right)(1.1)=-24.404(1.1)=-26.84
$$

$\$ 10$ (in the money):

$$
\beta_{P u t}=\frac{\Delta S}{\Delta S+B} \beta_{S}=\left(\frac{-0.99936(10)}{-.99936(10)+14.89739}\right)(1.1)=-2.03792(1.1)=-2.24
$$

IV. Beta of a Firm's Assets and Risky Debt

Basic idea: Can combine:

1) equation 21.17 (Beta of an option)
2) the idea that an option is equivalent to a portfolio of stocks and risk-free bonds and
3) the idea that stock is essentially a call on the firm's assets

Let:
$\beta_{\mathrm{D}}=$ beta of firm's risky debt
$\beta_{U}=$ beta of firm's unlevered equity $=$ beta of firm's assets
$\beta_{\mathrm{E}}=$ beta of firm's levered equity
$\Delta=\mathrm{N}\left(\mathrm{d}_{1}\right)$ when calculate the value of the firm's stock as a call on the firm's assets
A = market value of the firm's assets
$\mathrm{D}=$ market value of the firm's debt
$\mathrm{E}=$ market value of the firm's equity

$$
\begin{equation*}
\beta_{D}=(1-\Delta) \frac{A}{D} \beta_{U}=(1-\Delta)\left(1+\frac{E}{D}\right) \beta_{U} \tag{21.20}
\end{equation*}
$$

where:

$$
\begin{equation*}
\beta_{U}=\frac{\beta_{E}}{\Delta\left(1+\frac{D}{E}\right)} \tag{21.21}
\end{equation*}
$$

Note: derivations of 21.20 and 21.21 in supplement on web

Ex. Assume that the market value of firm's stock is $\$ 100$ million and that the beta of the firm's stock is 1.3. Assume also that the firm has issued zero-coupon debt that matures 5 years from today for $\$ 90$ million and that the market value of this debt is $\$ 60$ million. Assume also that the risk-free rate is 5%. What is the beta of the firm's assets and of the firm's debt?

Notes:

1) Viewing equity as a call on the firm's assets with a strike price of $\$ 90$ million (the amount owed the bondholders at maturity in 5 years).
2) When using the Black-Scholes model, we discount the strike price (K) at the risk-free rate
3) To solve for Δ, must:
a) find σ that causes BSOPM value of stock to equal current market value
b) determine Δ using this σ
$\Rightarrow \mathrm{A}=100+60=160$,
$\operatorname{PV}(\mathrm{K})=\frac{90}{(1.05)^{5}}=70.5174$
$d_{1}=\frac{\ln \left(\frac{160}{70.5174}\right)}{\sigma \times \sqrt{5}}+\frac{\sigma \times \sqrt{5}}{2}$
$d_{2}=d_{1}-\sigma \times \sqrt{5}$
$\Rightarrow \mathrm{E}=100=160 \times \mathrm{N}\left(\mathrm{d}_{1}\right)-70.5174 \times \mathrm{N}\left(\mathrm{d}_{2}\right)$
$\Rightarrow>$ solve for σ that solves for $E=100$
Using solver in Excel: σ is $.4313, \mathrm{~d}_{1}=1.33175, \mathrm{~N}\left(\mathrm{~d}_{1}\right)=0.90853, \mathrm{~d}_{2}=0.36732, \mathrm{~N}\left(\mathrm{~d}_{2}\right)$ $=0.64331$
$\beta_{U}=\frac{\beta_{E}}{\Delta\left(1+\frac{D}{E}\right)} ; \beta_{D}=(1-\Delta) \frac{A}{D} \beta_{U}$
$\beta_{U}=\frac{1.3}{.90853\left(1+\frac{60}{100}\right)}=0.8943$
$\beta_{D}=(1-.90853) \frac{160}{60}(.8943)=0.2181$
Note: $\beta_{A}=\beta_{U}=\left(\frac{60}{160}\right)(.2181)+\left(\frac{100}{160}\right)(1.3)=.8943$
