Chapter 17 Supplement: Steps and explanations in some of Chapter 17's equations

- A. Deriving Equation 17.1 considering a long-term investor
 - 1. Assume an investor is planning to sell a stock that is about to go ex-dividend. Assume also that the investor bought at price P_{buy} .
 - a. If the investor sells the stock just before it goes ex-dividend, the payoff = $P_{cum} \tau_g (P_{cum} P_{buy})$

where:

 P_{cum} = price of stock just before it goes ex-dividend τ_g = capital gains tax rate

Note: lose τ_g of capital gain to taxes

b. If the investor sells the stock just after it goes ex-dividend, the payoff = $Div(1-\tau_d) + P_{ex} - \tau_g(P_{ex} - P_{buy})$

where:

 P_{ex} = price of stock just after it goes ex-dividend τ_d = dividend tax rate

Notes:

lose τ_g of capital gain to taxes
 lose τ_d of dividend to taxes
 P_{ex} < P_{cum}

2. For the investor to be indifferent, the payoffs must be equal

Note:

- => if payoff from selling before goes ex-div higher, all investors will want to sell before goes ex-div driving P_{cum} lower and P_{ex} higher.
- => if payoff from selling ex-div higher, all investors will wait to sell driving P_{cum} higher and P_{ex} lower.

$$= P_{cum} - \tau_g \left(P_{cum} - P_{buy} \right) = Div(1 - \tau_d) + P_{ex} - \tau_g \left(P_{ex} - P_{buy} \right)$$

$$P_{cum} - \tau_g P_{cum} + \tau_g P_{buy} = Div(1 - \tau_d) + P_{ex} - \tau_g P_{ex} + \tau_g P_{buy}$$

$$P_{cum} \left(1 - \tau_g \right) = Div(1 - \tau_d) + P_{ex} \left(1 - \tau_g \right)$$
Note: subtract $\tau_g P_{buy}$ from both sides

$$P_{cum}(1-\tau_g) - P_{ex}(1-\tau_g) = Div(1-\tau_d)$$

$$(P_{cum} - P_{ex})(1-\tau_g) = Div(1-\tau_d)$$

B. Deriving Equation 17.2 from 17.1

$$(P_{cum} - P_{ex})(1 - \tau_g) = Div(1 - \tau_d)$$

$$P_{cum} - P_{ex} = Div\left(\frac{1 - \tau_d}{1 - \tau_g}\right)$$

$$P_{cum} - P_{ex} = Div\left(1 - 1 + \frac{1 - \tau_d}{1 - \tau_g}\right)$$

$$P_{cum} - P_{ex} = Div\left(1 - \frac{1 - \tau_g}{1 - \tau_g} - \frac{\tau_d - 1}{1 - \tau_g}\right)$$

$$P_{cum} - P_{ex} = Div\left(1 - \frac{1 - \tau_g + \tau_d - 1}{1 - \tau_g}\right)$$

$$P_{cum} - P_{ex} = Div\left(1 - \frac{\tau_d - \tau_g}{1 - \tau_g}\right)$$

$$P_{cum} - P_{ex} = Div\left(1 - \frac{\tau_d - \tau_g}{1 - \tau_g}\right)$$
where: $\tau_d^* = \left(\frac{\tau_d - \tau_g}{1 - \tau_g}\right)$

C. Steps between (17.5) and (17.6)

$$P_{retain} = 100 \times \frac{(1 - \tau_c)(1 - \tau_d)}{(1 - \tau_i)}$$
(17.5)

$$= 100 \times \frac{(1 - \tau_c)(1 - \tau_d)(1 - \tau_g)}{(1 - \tau_i)(1 - \tau_g)}$$
Note: can multiply top and bottom by same #

$$= 100 \times \frac{(1 - \tau_d)}{(1 - \tau_g)} \times \frac{(1 - \tau_c)(1 - \tau_g)}{(1 - \tau_i)}$$
Note: $P_{cum} = 100 \times \left(\frac{1 - \tau_d}{1 - \tau_g}\right)$ from (17.4)

$$= P_{cum} \times \left(1 - 1 + \frac{(1 - \tau_c)(1 - \tau_g)}{(1 - \tau_i)}\right)$$

$$= P_{cum} \times \left(1 - \left(1 - \frac{(1 - \tau_c)(1 - \tau_g)}{(1 - \tau_i)} \right) \right)$$
$$= P_{cum} \times \left(1 - \tau_{retain}^* \right)$$
(17.6)

where:
$$\tau_{retain}^* = 1 - \frac{(1 - \tau_c)(1 - \tau_g)}{(1 - \tau_i)}$$
 (17.7)