Chapter 14: Capital Structure in a Perfect Market

•	\sim		•
1	()	vervi	PIX

Note: usually use leverage ratios like debt/assets to measure the mix of debt and equity	in

- 2. Basic question: Can a firm make stockholders better (or worse) off by changing its capital structure?
- 3. Perfect capital markets

1. Capital structure:

1) all securities are fairly priced

a firm's capital structure

- 2) there are no taxes or transaction costs
- 3) the total cash flows generated by the firm's project is unaffected by how the firm raises the money to invest in the projects
- 4. Basic ideas: In perfect capital markets:1) capital structure has no impact on the firm's:

-

2) when leverage increases:

a)

b)

c)

- 5. Reason study a model with such unrealistic assumptions
 - => starting point

Ch 15: how do taxes change our conclusions?

Ch 16: how do bankruptcy, conflicts of interest, and access to information change our conclusions?

II. Modigliani-Miller I: Leverage and Firm Value

A. Law of One Price

- 1) the total cash paid to a firm's investors (debt and equity) equals the total cash generated by the firm's assets
- 2) by the Law of One Price, the firm's debt and equity must have same value as the firm's assets
- 3) by assumption, capital structure has no impact on the total cash flow generated by firm's assets

	IIIIII b abbeti	,			
=>					
	Note:				
	Note:				

B. Homemade Leverage

Basic idea:

r. creaming an amovered position in a min with deet.		
=>		
=>		
=> just as if the firm never split them up		
2. Creating a levered position in a firm with no debt		

1 Creating an unlevered position in a firm with debt.

Note: in a perfect market, investors can borrow at the same rate as firms

=>

=> it doesn't matter if the firm or the investor does the borrowing

- Ex. Assume a firm has assets with a market value of \$2500 will generate a cash flow of either \$100 or \$150 per year.
 - 1. Creating an unlevered position in the firm
 - a. Assume the firm is 100% equity financed
 - => firm's stock is worth \$2500
 - => cash flow paid out to stockholders = \$100 or \$150 per year
 - *Q*: How create an unlevered investment in the firm's assets?

=>

- => amount of own money must invest:
- => net annual cash flow to investor:
- b. Assume the firm has issued bonds worth \$1000 at a 4% interest rate
 - => firm's stock is worth \$1500 = 2500 1000
 - => annual interest paid by the firm = \$40
 - => cash flow paid out to stockholders = \$60 = 100 40 or \$110 = 150 40
 - Q: How create an unlevered investment in the firm's assets?

=>

- => amount of own money must invest:
- => net annual cash flow to investor:

Note:

=>

- 2. Creating a levered position in the firm
 - a. Assume the firm has issued bonds worth \$1000 at a 4% interest rate
 - => firm's stock is worth \$1500 = 2500 1000
 - => annual interest paid by the firm = \$40
 - => cash flow paid out to stockholders = \$60 = 100 40 or \$110 = 150 40

Q: How create a levered investment in the firm's assets?
=>
=> amount of own money must invest:
=> net annual cash flow to investor:
b. Assume the firm is 100% equity financed
=> firm's stock is worth \$2500 => cash flow paid out to stockholders = \$100 or \$150 per year Q: How create a levered investment in the firm's assets?
=>
=> amount of own money must invest:
=> net annual cash flow to investor:
Note:
riote.
=>
C. Overall conclusion:
II. Modigliani-Miller II: Leverage and Risk
A. Intuition
1. Leverage, risk, and the cost of equity capital
When a firm has more leverage in its capital structure:
=> cost of capital for equity rises
=>
=>

2. Leverage and expected return

=> stockholder expected returns rise with leverage

=>

=> reason: bondholders promised the first, safest cash that the firm earns

=>

=> reason: firm will be able to borrow at a lower rate than it will expect to earn

B. Math

Note: to prove the increase in E(R) *and* r *offset, must use math*

Note: See Chapter 14 supplement for development of the math

Let:

E = market value of the firm's outstanding equity

D = market value of the firm's outstanding debt

 β_E = beta of firm's levered equity

 β_D = beta of firm's debt

 β_U = beta of firm's unlevered equity (if it has no debt) = beta of firm's assets = β_A

 r_E = cost of capital for firm's levered equity

 $r_D = \cos t$ of capital for firm's debt

 $r_U = \cos t$ of capital for firm's unlevered equity = cost of capital for firm's assets = r_A

1. Leverage, risk, and the cost of equity capital

$$\beta_E = \beta_U + \frac{D}{E}(\beta_U - \beta_D) \tag{14.10}$$

$$r_E = r_U + \frac{D}{F}(r_U - r_D) \tag{14.5}$$

=>

=>

Note: $\beta_D < \beta_U$ and $r_d < r_U$

Reason: debt holders get the assets' first, least risky cash flows

 \Rightarrow impact on β_E and r_E as leverage increases:

2. Leverage and expected return

$$E(R_E) = E(R_U) + \left(\frac{D}{E}\right) \left(E(R_U) - E(R_D)\right)$$
(14.A)

- \Rightarrow as leverage increases, $\frac{D}{E}$ rises
- \Rightarrow in equilibrium, $E(R_D) \le E(R_U)$
- \Rightarrow impact on $E(R_E)$ as leverage increases:
- 3. Leverage, expected return, and cost of capital

Key:

=>

- C. Weighted Average Cost of Capital
 - 1. All equity firms
 - => all free cash flows are paid to the firm's stockholders
 - => the risk of a firm's equity equals the risk of the firm's assets

$$\Rightarrow r_U = r_A \tag{14.6}$$

2. Firms with debt and equity in their capital structure

Let: r_{WACC} = firm's weighted average cost of capital

$$r_{WACC} = \left(\frac{E}{D+E}\right)r_E + \left(\frac{D}{D+E}\right)r_D = r_U = r_A \tag{14.7} \text{ and } (14.8)$$

Key: In perfect markets, the firm's weighted average cost of capital does not change as the firm changes its capital structure

Example: Assume a firm's assets have a beta of 1.2, that the risk-free rate is 4% and that the market risk premium is 5%. 1) What is the firm's cost of capital if it is funded with \$1100 of equity? 2) What is the firm's weighted average cost of capital if it is funded with \$300 of risk-free debt and \$800 of equity?

1)
$$r_A = .10 =$$

Note: this is the cost of capital for the firm's assets and unlevered equity 2) $\beta_E = 1.2 + \left(\frac{300}{800}\right)(1.2 - 0) = 1.65$: Equation 14.10 (p. 5)

Note: this is the beta of levered equity

$$r_E = .1225 = .$$

Note: this is the cost of capital for levered equity in Eq. 12.4

$$r_{WACC} = \left(\frac{800}{1100}\right).1225 + \left(\frac{300}{1100}\right).04 = (.73).1225 + (.27).04 = .1 = r_U = r_A$$

Note: if firm holds cash and risk-free securities, use firm's net debt for "D" Net debt = debt - cash and risk-free securities held by the firm

3. Using the weighted average cost of capital

Main use => estimating the cost of capital for a project

1) project has the same risk as the firm's existing assets

=>

2) project's risk differs from the firm's existing assets

=>

III. Implications of Modigliani and Miller beyond Capital Structure

=> if financial transaction appears to create value:

a)

b)

=>