Chapter 8: Fundamentals of Capital Budgeting

Big Picture: To value a project, we must first estimate its cash flows.

Note: most managers estimate a project's cash flows in two steps:

- 1) Impact of the project on the firm's <u>incremental</u> earnings
- 2) Use <u>incremental</u> earnings to determine the project's <u>incremental</u> cash flows

I. Unlevered Net Income

Basic Question: How do firm's unlevered earnings <u>change</u> as result of an investment decision?

A. Excel

- => for real projects, difficult to do by hand => use Excel
- => see my website for Excel worksheets I have created for the example in the book

B. Calculating by hand:

$$UNI = EBIT \times (1 - \tau_c) = (R - E - D)(1 - \tau_c)$$
(8.2)

where:

UNI = incremental unlevered net income

=> counting only incremental operating cash flows, but no financing cash flows

EBIT = incremental earnings before interest and taxes

 τ_c = firm's marginal corporate tax rate

R = incremental revenues

E = incremental expenses (or costs)

D = incremental depreciation

C. Review of How to Identify Incremental Earnings (and Cash Flows)

1. General Principles

Basic question: How do the earnings (and cash flows) for the entire firm differ with the project verses without the project?

=> count anything that changes for the firm

=> count nothing that remains the same

Example of costs that often don't change with new project: overhead expenses

- => don't count previous or committed spending unless can get some back if don't proceed
 - => part can't get back is called sunk costs
 - Ex. money already spent to research and develop a product
 - Ex. money spent on a partially completed building that can be sold

2. Specific Issues

- a. Sales and Expenses
 - => count changes in sales or expenses that result from the project
 - => count changes in sales or expenses elsewhere in the firm if it undertakes the project
 - => called project externalities or cannibalization
 - Ex. sales from new project replace existing sales
 - Ex. no longer paying overtime at an existing facility
 - => don't count any interest expense
 - => accepting/rejecting the project is a separate decision from how the firm will finance the project
 - => taxes are an expense
 - => relevant tax rate: firm's marginal corporate tax rate

b. Fixed assets

- 1) Fixed assets that acquire because undertake project
 - a) cash outflow when pay to build or acquire
 - b) reduction in taxes because of depreciation in years after the acquisition
 - => treat as a cash inflow since reduces outflow

Note: depreciation does not directly impact cash flow but indirectly through taxes

=> can use straight line or accelerated (MACRS) depreciation

MACRS Depreciation:

Keys:

- 1) multiply cost of project by % listed in MACRS table
- 2) Year 0 = year asset first put into use (To minimize confusion, I will use the authors' modification of the IRS' table)
- 3) the following table is in Appendix A of the book

Depreciation Rate for Recovery Period

Year	3 Years	5 Years	7 Years	10 Years	15 Years	20 Years
0	33.33	20.00	14.29	10.00	5.00	3.750
1	44.45	32.00	24.49	18.00	9.50	7.219
2	14.81	19.20	17.49	14.40	8.55	6.677
3	7.41	11.52	12.49	11.52	7.70	6.177
4		11.52	8.93	9.22	6.93	5.713
5		5.76	8.92	7.37	6.23	5.285
6			8.93	6.55	5.90	4.888
7			4.46	6.55	5.90	4.522
8				6.56	5.91	4.462
9				6.55	5.90	4.461
10				3.28	5.91	4.462
11					5.90	4.461
12					5.91	4.462
13					5.90	4.461
14					5.91	4.462
15					2.95	4.461
16						4.462
17						4.461
18						4.462
19						4.461
20						2.231

- 2) Fixed assets that able to sell because invest in the project
 - a) after-tax cash flow from sale
 - b) loss of tax shield would have realized if had kept asset
- 3) Use of existing assets
 - => cost equals value of its best alternative use
 - => called an opportunity cost

II. Free Cash Flow

A. Calculating Free Cash Flow

Key

- 1) start with incremental unlevered net income
- 2) back out non-cash items in UNI
- 3) add cash items not in UNI

$$=> FCF = UNI + D - CE - \Delta NWC \tag{8.5a}$$

where:

CE = incremental capital expenditures

 $\triangle NWC$ = change in net working capital associated with project

$$NWC = CA - CL = C + I + AR - AP$$
(8.3)

CA = incremental current assets

CL = incremental current liabilities

C = incremental cash

I = incremental inventory

AR = incremental accounts receivable

AP = incremental accounts payable

$$\Rightarrow FCF = (R - E - D) \times (1 - \tau_c) + D - CE - \Delta NWC$$
 (8.5b)

$$FCF = (R - E) \times (1 - \tau_c) - CE - \Delta NWC + \tau_c \times D$$
(8.6)

B. Notes

- 1. Depreciation (D)
 - => add back to FCF since subtracted from UNI but doesn't involve a cash outlay
- 2. Capital Expenditures (CE)
 - => incremental capital spending creates an outflow of cash that isn't counted in UNI

Note: cost is recognized in UNI over the life of the asset through depreciation

- => incremental asset sales are entered as a negative CE
 - => creates a cash inflow
 - => must also consider tax implications of any asset sales

3. Change in Net Working Capital (Δ NWC)

- 1) sales on credit generate revenue but no cash flow
- 2) the collection of receivables generates a cash inflow but no revenue
- 3) the sale of inventory generates an expense but no cash outflow
- 4) the purchase of inventory generates a cash outflow but no expense
- => subtracting the change in net working capital adjusts for these issues

Notes on changes in net working capital:

- 1. recovery of net working capital
 - => Changes in net working capital are usually reversed at the end of the project
 - Ex. Cash put into cash registers is no longer needed when close a store
- 2. taxability
 - => changes in net working capital are not taxable
 - => buying inventory doesn't create taxable income, selling inventory for a profit does

III. Examples

Example 1:

Assume you are trying to decide whether to rent a building for \$30,000 a year for the next 2 years (payments are due at the end of the year). A year from today you plan to purchase inventory for \$50,000 that you will sell immediately for \$110,000. Two years from today you plan to purchase inventory for \$70,000 that you will sell immediately for \$150,000. Calculate the store's incremental unlevered net income and free cash flow for each year of operation if the corporate tax rate is 21%.

$$UNI = (R - E - D)(1 - \tau_c)$$

 $NWC = C + I + AR - AP$
 $FCF = UNI + D - CE - \Delta NWC$
 $UNI_1 = \$23,700 =$
 $UNI_2 = \$39,500 =$
 $FCF_1 = 23,700$
 $FCF_2 = 39,500$

Notes:

- 1) FCF = UNI since no depreciation, capital expenditures or changes in net working capital
- 2) Will build on this example. New information in later examples will be underlined.

Example 2:

Assume you are trying to decide whether to rent a building for \$30,000 a year for the next 2 years (payments are due at the end of the year). A year from today you plan to purchase inventory for \$50,000 that you will sell immediately for \$110,000. Two years from today you plan to purchase inventory for \$70,000 that you will sell immediately for \$150,000. Assume also that need to hold cash balances (to facilitate operations) of \$1000 a year from today and \$1500 two years from today. Calculate the store's incremental unlevered net income and free cash flow for each year of operation if the corporate tax rate is 21%.

$$NWC = C + I + AR - AP$$

$$VNI = (R - E - D)(1 - \tau_c)$$

$$FCF = UNI + D - CE - \Delta NWC$$

$$UNI_1 = (110,000 - (30,000 + 50,000) - 0)(1 - .21) = \$23,700$$

$$UNI_2 = (150,000 - (30,000 + 70,000) - 0)(1 - .21) = \$39,500$$

Note: holding cash doesn't affect UNI

NWC₁ = 1000 =
NWC₂ = 1500 =
NWC₃ = 0

$$\Delta$$
NWC₁ = 1000 =
 Δ NWC₂ = 500 =
 Δ NWC₃ = -1500 =
FCF₁ = 22,700 =
FCF₂ = 39,000 =
FCF₃ = 1500 =

Key: don't have access to all of the cash flows generated by sales since must hold some cash at the store.

Example 3:

Assume you are trying to decide whether to rent a building for \$30,000 a year for the next 2 years (payments are due at the end of the year). A year from today you plan to purchase inventory for \$50,000 that you will sell immediately for \$110,000. Two years from today you plan to purchase inventory for \$70,000 that you will sell immediately for \$150,000. Seventy-five percent of sales will be on credit that you will collect one year after the sale. Assume also that need to hold cash balances (to facilitate operations) of \$1000 a year from today and \$1500 two years from today. Calculate the store's incremental unlevered net income and free cash flow for each year of operation if the corporate tax rate is 21%.

$$UNI = (R - E - D)(1 - \tau_c)$$

 $NWC = C + I + AR - AP$
 $FCF = UNI + D - CE - \Delta NWC$

$$UNI_1 = (110,000 - (30,000+50,000) - 0)(1 - .21) = $23,700$$

 $UNI_2 = (150,000 - (30,000+70,000) - 0)(1 - .21) = $39,500$

Note: doesn't change for Examples 1, 2, or 3

$$NWC_0 = 0$$

 $NWC_1 = 83,500 =$

Note:
$$AR_1 = 82,500 = .75 \times 110,000$$

$$NWC_2 = 114,000 =$$

Note:
$$AR_2 = 112,500 = .75 \times 150,000$$

$$NWC_3 = 0$$

$$\Delta$$
NWC₁ = 83,500 = Δ NWC₂ = 30,500 = Δ NWC₃ = -114,000 =

$$FCF_1 = -59,800 =$$

 $FCF_2 = 9,000 =$
 $FCF_3 = 114,000 =$

Keys:

- => sales on credit generate revenue but not cash flow
- => collections of receivables generate cash flows but not revenues
- => UNI overstates early cash flow and understates late cash flow

Example 4:

Assume you are trying to decide whether to rent a building for \$30,000 a year for the next 2 years (payments are due at the end of the year). Today you plan to purchase inventory for \$50,000 that you will sell a year from today for \$110,000. A year from today you plan to purchase inventory for \$70,000 that you will sell two years from today for \$150,000. Sixty percent of all inventory purchases will be on credit due one year after you buy it. Seventy-five percent of sales will be on credit that you will collect one year after the sale. Assume also that need to hold cash balances (to facilitate operations) of \$1000 a year from today and \$1500 two years from today. Calculate the store's incremental unlevered net income and free cash flow for each year of operation if the corporate tax rate is 21%.

$$UNI = (R - E - D)(1 - \tau_c)$$

$$NWC = C + I + AR - AP$$

$$FCF = UNI + D - CE - \Delta NWC$$

$$UNI_1 = (110,000 - (30,000 + 50,000) - 0)(1 - .21) = \$23,700$$

$$UNI_2 = (150,000 - (30,000 + 70,000) - 0)(1 - .21) = \$39,500$$

Note: doesn't change from previous examples

$$\begin{aligned} \text{NWC}_0 &= 20,000 = \\ \text{Note: } AP_0 &= 30,000 = .6(50,000) \\ \text{NWC}_1 &= 111,500 = \\ \text{Note: } AP_1 &= 42,000 = - .6(70,000) \\ \text{NWC}_2 &= 114,000 = \\ \text{NWC}_3 &= 0 \\ \\ \Delta \text{NWC}_0 &= 20,000 = \\ \Delta \text{NWC}_1 &= 91,500 = \\ \Delta \text{NWC}_2 &= 2,500 = \\ \Delta \text{NWC}_3 &= -114,000 = \\ \\ \text{FCF}_0 &= -20,000 = \\ \text{FCF}_1 &= -67,800 = \\ \text{FCF}_2 &= 37,000 = \\ \text{FCF}_3 &= 114,000 = \\ \end{aligned}$$

Keys:

=> purchases on credit offset to some extent the differences between UNI and Cash Flow associated with buying inventory

Example 5:

Assume you are trying to decide whether to buy a building for \$250,000. You expect to sell it in two years for \$225,000. While you own the building, you will depreciate it using the 3-year MACRS class. You will put the building into use a year from today and thus recognize depreciation for the first time a year from today. Today you plan to purchase inventory for \$50,000 that you will sell a year from today for \$110,000. A year from today you plan to purchase inventory for \$70,000 that you will sell two years from today for \$150,000. Sixty percent of all inventory purchases will be on credit due one year after you buy it. Seventy-five percent of sales will be on credit that you will collect one year after the sale. Assume also that need to hold cash balances (to facilitate operations) of \$1000 a year from today and \$1500 two years from today. Calculate the store's incremental unlevered net income and free cash flow for each year of operation if the corporate tax rate is 35%.

```
\begin{aligned} &D_1 = 83,325 = \\ &D_2 = 111,125 = \end{aligned} &UNI_1 = -\$18,426.75 = \\ &UNI_2 = -\$24,588.75 = \end{aligned}
```

Note: NWC and \triangle NWC is the same as Example 4

$$\begin{split} \text{NWC}_0 &= 20,000 = 0 + 50,000 + 0 - 30,000 \\ \text{NWC}_1 &= 111,500 = 1000 + 70,000 + 82,500 - 42,000 \\ \text{NWC}_2 &= 114,000 = 1500 + 112,500 + 0 - 0 \\ \text{NWC}_3 &= 0 \end{split}$$

$$\Delta \text{NWC}_0 &= 20,000 - 0 = 20,000;$$

$$\Delta \text{NWC}_1 &= 111,500 - 20,000 = 91,500;$$

$$\Delta \text{NWC}_2 &= 114,000 - 111,500 = 2,500;$$

$$\Delta \text{NWC}_3 &= 0 - 114,000 = -114,000 \end{split}$$

$$\text{FCF}_0 &= -270,000 = \\ \text{FCF} &= UNI + D - CE - \Delta NWC$$

Proceeds from sale of building:

Book value₂ =
$$55,550$$
 =
After-tax proceeds = $189,415.50$ =
 CE_2 = $-189,415.50$

$$FCF_2$$
 = $273,451.74$ =
 FCF_3 = $114,000$ =

IV. Break-even Analysis, Sensitivity Analysis, and Scenario Analysis

Break-even: level of some input that makes NPV = 0 Sensitivity analysis: examines impact on NPV of changing one input variable Scenario analysis: examines impact on NPV of changing multiple related input variables

Key: Use goal seek and data tables in Excel