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Graphs and Networks

What is a graph? What is a network?

• A graph (N, g) and a network are largely synonymous terms in
this class, and consist of

• a set of nodes N = {1, ..., n}
• a real-valued n × n matrix, g

• gij is the (i , j) element of the matrix.

• The matrix g is often referred to as the adjacency matrix, as
it lists which nodes are linked to each other (or which nodes
are adjacent to one another).



What is a Matrix?

• An n ×m matrix is a rectangular array of numbers.

• Example:

a =

1 2 3
4 5 6
7 8 9

 (1)

• We refer to individual elements, aij by their row and column
indices

• Ex: a12 = 2, a22 = 5, a31 = 7.

• Adjacency matrices for unweighted graphs have gij = 1 when
there is an edge between i and j .

• gij = 0 otherwise



Graphs and Networks

• We can allow g to take on more than two values, for example
to keep track of the intensity of the level of relationships,

• e.g. in a weighted graph.

• A network is directed if it is possible that gij 6= gji

• A network is undirected if it is not possible that gij 6= gji



Graphs and Networks

What is the adjacency matrix?

g =

0 1 0
1 0 1
0 1 0


g is the adjacency matrix for the (undirected and unweighted)
network on N = {1, 2, 3}:

1 2 3

Each element, gij is a zero or one. Diagonal is zero by convention
as a node cannot be linked to itself.



• Links are often referred to as edges or ties; and as arcs in the
case of directed graphs.

• Self-links or loops will often not have any real consequence.
Unless otherwise indicated, assume that gii = 0 for all i .



Paths, Walks, and Cycles

Different ways of describing navigating a network:

• A walk is a sequence of links connecting a sequence of nodes.
In a network g ∈ G (N) between nodes i and j , a walk is a
sequence of links i1i2, ..., iK−1iK such that ik ik+1 ∈ g for each
k ∈ {1, ...,K − 1}, with i1 = i and iK = j .

• A path is a walk where a node appears at most once in the
sequence. In a network g ∈ G (N) between nodes i and j , a
path is a sequence of links i1i2, ..., iK−1iK such that ik ik+1 ∈ g
for each k ∈ {1, ...,K − 1}, with i1 = i and iK = j , and such
that each node in the sequence i1, ..., iK is distinct.

• A geodesic between nodes i and j is the shortest path
between these nodes.



Paths, Walks, and Cycles

Different ways of describing navigating a network:

• A cycle is a walk that starts and ends on the same node, with
all nodes appearing once except the starting node which also
appears as the ending node.

• In a network g ∈ G (N) between nodes i and j , a cycle is a
walk i1i2, ..., iK−1iK such that i1 = iK , with all other nodes
being distinct (ik 6= ik ′ when k < k ′ unless k = 1 and k ′ = K ).



Paths, Walks, and Cycles

What else does the adjacency matrix tell us?

• If we have the following network, g

2 3

1 4

• And by convention let gii = 0, then the adjacency matrix is:

g =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0





Paths, Walks, and Cycles
Matrix multiplication

• g2 =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

×


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 =


2 1 1 1
1 2 1 1
1 1 3 0
1 1 0 1


• g2

12 : (0× 1) + (1× 0) + (1× 1) + (0× 0) = 1, etc.

• Interpretation: g2 provides all possible walks of length 2
between any two nodes, including walks with many cycles
within them

• g11 = 2 because there are two walks of length 2 for node 1:
From node 1 to 2 and back to 1, and from node 1 to 3 and
back to 1.

• g32 = 1 because there is only one walk of length 2 from node 3
to node 2: from node 3 to node 1, node 1 to node 2.

• For the kth power of the network, gk would keep describe all
possible walks of length k between any two nodes, including
walks with many cycles within them.



Directed Paths, Walks, and Cycles

More formal definitions of directed networks

• A directed walk in a network g ∈ G (N) is a sequence of links
i1i2, ..., iK−1iK such that ik ik+1 ∈ g (that is gik ik+1

= 1) for
each k ∈ {1, ...,K − 1}.

• A directed path in a network g ∈ G (N) from node i to node j
is a sequence of links i1i2, ..., iK−1iK such that ik ik+1 ∈ g
(that is gik ik+1

= 1) for each k ∈ {1, ...,K − 1}, with i1 = i
and iK = j , and such that each node in the sequence i1, ..., iK
is distinct.

• A directed cycle in a network g ∈ G (N) is a sequence of links
i1i2, ..., iK−1iK such that ik ik+1 ∈ g (that is gik ik+1

= 1) for
each k ∈ {1, ...,K − 1}, with i1 = iK .
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A Directed Path from 2 to 4 (via 1 and 3); a Directed Cycle from
1 to 3 to 2 to 1; and a Directed Walk from 3 to 2 to 1 to 3 to 4



Undirected Paths, Walks, and Cycles

• In cases where the direction of the link just indicates who
initiated the link, but where links can conduct in both
directions, we can keep track of undirected paths. There we
can think of i and j being linked if either gij = 1 or gji = 1.

• To be more specific, given a directed network g , let ĝ denote
the undirected network obtained by allowing an (undirected)
link to be present whenever there is a directed link present in
g . That is, let ĝij = max(gij , gji ). There is an undirected path
between nodes i and j if there is a path between them in ĝ .

• Similarly, we defined an undirected cycle or undirected walk.



Quiz

Q1:Is the following matrix directed or undirected? Why?

g =

0 1 0
0 0 1
0 1 0





Quiz

Q1:Is the following matrix directed or undirected? Why?

g =

0 1 0
0 0 1
0 1 0


Ans: It’s directed because g21 6= g12.

1 2 3



Quiz (cont)

Q2: Write the adjacency matrix for the following graph.

4 35

7

6

2

1



Quiz (cont)
Q2: Write the adjacency matrix for the following graph.

4 35

7

6

2

1

Ans:

g =



0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0





Components and Connected Subgraphs

• We often care about the identify which nodes can reach which
other nodes through paths in the network

• Contagion, learning, diffusion

• Looking at path relationships in a network naturally partitions
a network into different connected subraphs commonly called
components

• A network (N, g) is connected (or path-connected) if every
two nodes in the network are connected by some path in the
network. That is, (N, g) is connected if for each i ∈ N and
j ∈ N there exists a path in (N, g) between i and j .



Components and Connected Subgraphs

• A component of a network (N, g) is a nonempty subnetwork
(N ′, g ′) such that ∅ 6= N ′ ⊂ N, g ′ ⊂ g , and (N ′, g ′) is
connected, and if i ∈ N ′ and ij ∈ g , then j ∈ N ′ and ij ∈ g ′.
In other words, the components of a network are the distinct
maximal connected subgraphs of the network.

• The set of components of a network (N, g) is denoted
C (N, g). In cases where N is fixed of obvious, components
can simply be denoted as C (g).



Components and Connected Subgraphs

• Components of a network partition the nodes into groups
within which nodes are path-connected. Let Π(N, g) denote
the partition of N induced by the network (N, g). That is,
S ∈ Π(N, g) if and only if (S , h) ∈ C (N, g) for some h ⊂ g .

• A network is connected if any only if it consists of a single
component, and so Π(N, g) = {N}.

• A link ij is a bridge in the network g if g − ij has more
components than g .

• In the case of a directed network, we refer to strongly
connected graphs or subgraphs, so that each node can reach
each other via a directed path.



A Network with Four Components



Trees, Stars, Circles, and Complete
Networks

• A tree is a connected network that has no cycles.

• A connected network is a tree if and only if it has n − 1 links.

• A tree has at least two leaves, where leaves are nodes that
have exactly one link.

• In a tree, there is a unique path between any two nodes.



Quiz

Q3: Is the following network a tree? Why/why not? Provide a
drawing that is a tree if not.

1 2

3 3



Quiz
Q3: Is the following network a tree? Why/why not? Provide a
drawing that is a tree if not.

1 2

3 3

Ans: It is not, because trees have n − 1 edges, and this network
has 4 nodes and 4 edges. The following is, though.

1 2

3 4



Trees, Stars, Circles, and Complete
Networks

• A forest is a network such that each component is a tree. Any
network that has no cycles is a forest.

• A star is a network such that there exists some node i such
that every link in the network involved node i . In this case, i
is referred to as the center of the star.

• A circle, or cycle-graph, is a network that has a single cycle
and such that each node in the network has exactly two
neighbors.

• A complete network is one where all possible links are present,
so one where gij = 1 for all i 6= j .



Four Trees in a Forest



A Complete Network on Six Nodes and a Star Network on Six
Nodes



Centrality

Measures of centrality can be categorized into four main groups:

1 degree: how connected a node is;

2 closeness: how easily a node can reach other nodes;

3 betweenness: how important a node is in terms of connecting
other nodes;

4 neighbors’ characteristics: how important, central, or
influential a node’s neighbors are.



Neighborhoods and Degree

• The neighborhood of a node i, Ni (g), is the set of nodes that
i is linked to. That is Ni (g) = {j : gij = 1}..

• The degree of a node, di (g), is the number of links that
involve that node, which is the cardinality of i ’s neighborhood.
Thus we define node i ’s degree in network g as
di (g) = #{j : gji = 1} = #Ni (g).

• Network density keeps track of the relative fraction of links
that are present, and is equal to the average degree divided by

n − 1,
∑n

i di (g)
(n−1)
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2
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• The above undirected network, g , has five 5 nodes.
• Node 2’s neighborhood is N2(g) = {1, 2}.
• Node 1 has a degree of 4 (d1(g) = 4),
• Node 3 has degree 3 (d3(g) = 3)



Distance and Diameter
More definitions!

• The diameter of a network is the largest geodesic in the
network.

• where geodesic is the largest shortest path between any two
nodes in the network.

• The average path length (or characteristic path length)
between nodes takes the average over geodesics. The average
path length will be bounded above by the diameter.

• Networks that are similar in degree may be very different in
structure.

• Diameter of a circle is either n
2 or (n−1)

2 depending on even or
odd number of nodes

• Diameter of a tree, there are n = 2K+1 − 1 nodes in a binary
tree and K levels. First solve for K

n = 2K+1 − 1

n + 1 = 2K+1

log2(n + 1) = K + 1log2(2)

log2(n + 1) = K + 1

K = log2(n + 1)− 1

• diameter= 2K for tree. Can you see why?



Circle vs. Binary Tree

• Diameter of circle network is (n−1)
2 = 14

2 = 7.

• Diameter of tree network is
2K = 2(log(n + 1)− 1) = 2(log2(16)− 1) = 2(4− 1) = 6



Calculating Shortest Path Lengths

• The shortest path length between nodes i and j can be found
by finding the smallest ` such that the ij-th entry g ` is
positive, and then that entry is the number of shortest paths
between those nodes.

• Calculating shortest path lengths for all pairs of nodes
provides a basic method of calculating or estimating diameter.



Degree Centrality

How connected is this node within the network?

• The degree centrality of a node tells us how well a node is
connected in terms of direct connections:

di (g)

(n − 1)
,

ranges from 0 to 1

• Degree centrality misses any aspect of how well located a
node is in a network. It might be that a node has relatively
few links, but lies in a critical location of the network.



Degree Centrality

4 35

7

6

2

1

A Central Node with Low Degree Centrality

• Node 1: d1
n−1 = 2

6 = 0.33

• Node 2:= 2
6 = 0.33

• Node 3:= 3
6 = 0.50

• Node 4:= 2
6 = 0.33

• Node 5:= 3
6 = 0.5

• Node 6:= 2
6 = 0.33

• Node 7:= 2
6 = 0.33



Closeness Centrality

Another obvious way to measure centrality is measure how long it
takes for the node to reach other nodes

• closeness centrality: the inverse of the average distance
between i and any other node:

(n − 1)

Σj 6=i`(i , j)
,

where `(i , j) is the number of links in the geodesic between i
and j .



Decay centrality

Variations on “closeness” exist – weight the further geodesics less
than the closer ones

• Decay centrality: weight each node’s decay parameter, δ,
where 0 < δ < 1, by the geodesic corresponding to path ij :

Σj 6=iδ
`(i ,j),

where `(i , j) is set to infinity if i and j are not path-connected.

• As δ gets close to one, decay centrality measures how the size
of the component a node lies in. As δ gets close to zero, decay
centrality gives infinitely more weight to closer nodes than
farther nodes and becomes proportional to degree centrality.



Betweenness Centrality

What about the importance of being unavoidable?

• Betweenness centrality equals:

CB
ei

(g) =
Pi (kj)

P(kj)
.

where Pi (kj) denote the number of geodesics between node k
and j that node i lies on, and P(kj) the total number of
geodesics between k and j .

• Betweenness centrality will usually be a fraction, and when it
is close to 1, it means node i lies on most of the shortest
paths connecting k to j , but if close to 0, then i avoidable on
geodesics from k and j .



Betweenness Centrality

• Averaging across all pairs of nodes, the betweenness centrality
of a node i is

CeBi (g) = Σk 6=j ;i /∈{k,j}
Pi (kj)/P(kj)

(n − 1)(n − 2)/2
.



Eigenvector Centrality

• Degree centrality doesn’t capture the importance of one’s
friends; idea of eigenvector centrality is that importance
comes from being connected to other important nodes

• The eigenvector centrality of a node is proportional to the
sum of the centrality of its neighbors:

λC e
i (g) = ΣjgijC

e
j (g).

• In terms of matrix notation,

λC e(g) = gC e(g),

where λ is a proportionality factor. Thus, C e(g) is an
eigenvector of g , and λ is its corresponding eigenvalue.

• If gij = 1, then Cj is counted, and if gij = 0, it’s not counted



Eigenvector centrality

• This is a system of equations in a system of unknowns

• To figure out Ci , we have to figure out Cj

• Eigenvectors have many possible solutions – generally up to n
different solutions; look for the solution with the largest
eigenvalue (Perron-Frobenius theorem which says if we are
dealing with a non-negative matrix, then the eigenvector
associated with the largest eigenvalue is going to have
non-negative values)

• Use software to calculate eigenvalues for you, as they get
annoying pretty fast otherwise

• Before calculating it, let’s look at some not so distant history
– Google PageRank



Eigenvector centrality example: PageRank

• PageRank is an algorithm used by Google Search to rank
websites in their search engine results; did you know it was
named after Larry Page, one of Google’s founders?

• PageRank is a way of measuring importance of website pages

“PageRank works by counting the number and
quality of links to a page to determine a rough
estimate of how important the website is. The
underlying assumption is that more important
websites are likely to receive more links from other
websites.”

• It’s not the only algorithm Google uses now – they use many
– but it was the first one, and is the cause of the company’s
initial success in search



PageRank

• The score of a page is proportional to the sum of the scores of
pages linked to it

• This helped Google dominate the search market early on

• So when you’d search, a bunch of pages would come up – but
the order in which those came up was ordered by Google
according to the ones with the largest eigenvector centrality
values

• PageRank was looking for pages that were important, and
eigenvector centrality was the measure of its importance

• Go back to the bowtie network from earlier and write down
the adjacency matrix



Bowtie and adjacency matrix

4 35

7

6

2

1

g =



0 1 1
1 0 1
1 1 0 1

1 0 1
1 0 1 1

1 0 1
1 1 0


(2)



Eigenvector centrality
• We are trying to solve the eigenvalue problem:

agC = C

• In eigenvalue problems, the constant is usually on the side
opposite the matrix; so define a = 1

λ and rewrite the above
equation as

1

λ
= C

,
gC = λC

• Use MATLAB to calculate eigenvalues:
• www.compileonline.com/execute_matlab_online.php

• We want the sum to add to one, so we divide the last column
by the sum of itself (2.34292 ) to find centralities by node

eigenvalues =



0.12768
0.12768
0.17146
0.14637
0.17146
0.12768
0.12768


(3)

www.compileonline.com/execute_matlab_online.php


Centrality

• As with “clustering”, theory tells us that network position
matters.

• Structural holes
• embedded links
• local bridges

• Again, how to consistently measure “important” positions is
less clear.



Triadic closure
• Triadic closure: If two people in a social network have a friend

in common, then there’s a higher probability that they will
become friends themselves at some point in time.

• New structure is called triangle – triadic closure “closes” the
third side of the triangle

A

B

C

A

B

C



Clustering

• The individual clustering coefficient is

Cli (g) =

∑
j 6=i ;k 6=j ;k 6=i gijgikgjk∑

j 6=i ;k 6=i gijgik
.

• In words... the probability that two randomly selected friends
of node A are friends with each other; equal to the fraction of
pairs of A’s friends already connected by edges



Clustering

Two options for measuring clustering of the network,

1 Overall clustering,

Cl(g) =
Σi#{kj in g |k , j in Ni (g)}

Σi#{|k, j in Ni (g)}

This repeats the individual clustering calculation across all
pairs of edges (not just those involving i).

2 Average clustering coefficient

ClAvg (g) = ΣiCli (g)/n.

Under average clustering, one gives more weight to the
low-degree nodes than the clustering coefficient.



Differences in Clustering Measures



Quiz

• Q4: Calculate the clustering coefficient, Cl1(g) for Node 1.

• Q5: Calculate the average clustering, Clavg (g) for the whole
network, g .

• Q6: Calculate the overall clustering, Cl(g).

2

3 1

4

5



Reasons for triadic closure

1 More opportunities to meet
2 Bayesian Trust – the fact that A and B are friends, and A and

C are friends, then B and C may have information about each
other based on the observed friendship with A.

• I’ll accept a friend request from a friend of a friend on
Facebook if we are both commenting in his thread for almost
no other reason than that I figure I’ll like this guy – a friend of
a friend is my friend?

3 Incentive and stress reduction
• My son experiences genuine stress whenever he has a party

because inevitably he’ll have to invite people across his social
network who don’t know one another; much easier if they just
knew each other

Bearman and Moody found that teenage girls with low clustering
coefficients in their network of friends are significantly more likely
to contemplate suicide than those whose clustering coefficient is
high. What else might explain this? (Causality and Correlation are
not the same...)



Strength of Weak Ties

• Mark Granovetter 1960s sociology student did his thesis on
job referrals for people who just got new jobs and found

1 16.7% found new job through a strong tie (i.e., at least 2
interactions per week)

2 55.7% via medium tie (i.e., at least 1 interaction per year)
3 27.6% via weak tie (i.e., <1 interaction per year)

• Theory: weak ties form “bridges”. Even though weak ties
were people with whom you had little interaction, they still
accounted for over a quarter of the information people were
getting in how they managed to find their jobs.



Strength of Weak Ties

• Think about information flow throughout network as moving
from node to node

• The people with whom you have strong ties – your spouse,
your children, your colleagues, people at church, your best
friends – are a very small number probably, maybe a dozens or
less

• But if you think of the number of people who you have ever
known in your life – weak ties – then the number is much
much higher, maybe on the order of thousands

• So you have many, many weak ties but only a few strong ties,
and even though you don’t interact as much with your weak
ties, it could be there is just more of them



Strength of Weak Ties

• The interesting point that Granovetter was making, though,
wasn’t that weak ties were greater in number – it was a
network explanation too

• Weak ties could be connecting you to another part of the
network

• When you look at friendships by race, you typically find a
tremendous amount of clustering by race, but not across race
– weak ties are often bridging racial networks

• Bridging might occur more often with weak ties, in other
words, and even though you interact with them relatively
infrequently, they are important because weak ties connect you
to another part of the network you wouldn’t otherwise access

• Accessing information isn’t redundant with respect to weak
ties, but may be with respect to strong ties



Bridges
• An edge that joins two nodes A and B in a graph is called a

bridge if deleting the edge would cause A and B to lie in two
different components

• In other words, this edge is literally the only path between its
endpoints, A and B.

• Small world theory (to be discussed later), though, suggests
bridges are probably rare phenomena – if we are all separated
by six path lengths, then by definition there are no bridges

• But this idea of a bridge can have global and local properties
– we may say that an edge between two nodes in a graph is a
local bridge if its endpoints A and B have no friends in
common.

• In other words, deleting that edge would increase the geodesic
between A and B to a value strictly more than 2.

• We say that the span of a local bridge is the distance its
endpoints would be from one another if the edge were deleted
(see next slide for en example)



Local bridges

GJ K

F H

C A B Z

D E Y X



Strong Triadic Closure Property

• The geodesic path length from A to B falls from 1 to 4 if we
remove AB

• A to B is a local bridge across this semi-tree network
shortening the geodesic, and depending on the location of the
edge, could reduce the diameter of a network if strategically
placed



Strong Triadic Closure Property
• Strong Triadic Closure Property

• assume all edges are either strong or weak, where strong ties
are friends and weak ties are acquaintances, and relabel a
network accordingly

• Moves towards a weighted graph as opposed to undirected
graphs

• If a node A has edges to nodes B and C, then the B-C edge is
especially likely to form if A’s edges to B and C are both
strong ties

• Granovetter extreme version: “We say that node A violates the
Strong Triadic Closure property if it has strong ties to two
other nodes B and C, and there is no edge at all (either a
strong or weak tie) between B and C. We say that a node A
satisfies the Strong Triadic Closure property if it does not
violate it.”

• No node in the previous figure will violates the Strong Triadic
Closure Property but if AF was strong instead of weak, then
nodes A and F would both violate the Strong Triadic Closure
Property



Local Bridges, Weak Ties

• This gave us a micro and macro measurement
• Strong and weak ties is a micro concept describing

interpersonal nodes
• Local bridges is a structural, global concept
• On the surface, no direct connection either between these two

concepts

• Using triadic closure, we have a claim: If a node A in a
network satisfies the Strong Triadic Closure property, and it is
involved in at least two strong ties, then any local bridge it is
involved in must be a weak tie.

• In other words, under the assumption of Strong Triadic Closure
property and a sufficient number of strong ties, the local
bridges in a network are necessarily weak ties under this claim



Proof by contradiction

• Take some network (N, g) where node A ∈ N. Let A satisfy
strong triadic closure property and is involved in at least two
strong ties.

• Suppose A is involved in a local bridge to B in a strong tie

• Contradiction
• Strong Triadic Closure says AB must exist
• By definition of a local bridge, it cannot exist



• Small networks can easily be described by g
• Easily illustrated in a figure
• or looking at adjacency matrix

• Larger networks are hard to envision and describe..

• We want statistics that describe recurring patterns and overall
features of the network.



Simplifying Observed Complexity

• Global patterns of networks
• degree distribution, path length, clustering, ...

• Segregation patterns
• node characteristics and homophily

• Local patterns
• Clustering, cycles, cliques

• Position in networks
• Centrality, influence, bridges/structural holes



Erdos-Renyi

• Start with n nodes.

• Each potential link is formed with probability p

• This is the benchmark model for network formation in the
literature (see Ch. 2 of Linked).



Erdos-Renyi (1959,1960) Random Graphs

• Even this simple model has some striking features that can be
characterized formally with probability theory.

• The presence (or absence) of a particular link is a Bernoulli
random variable (coin toss).

• This means that the degree of a node is a Binomial random
variable

• Recall that a binomial rv measures the number of successful
coin tosses

• Here, for a given link, measures the number of “successful”
edges.

• When n gets very large relative to p, the expected degree can
be approximated by a Poisson random variable.

• So, sometimes ER random graphs are called Poisson random
graphs.



Erdos-Renyi (1959,1960) Random Graphs

• ER random graph model predicts that we will all be
connected...



Erdos-Renyi (1959,1960) Random Graphs

• ER random graph model predicts that we will all be
connected...

• As the probability of connection, p, increases
• The number of edges goes up, (obviously)
• The size of components gets small
• i.e. a giant component emerges abruptly
• WHen p > 1

n (expected degree is 1)
• The giant component contains (almost) all nodes beyond a

higher threshold

• Metaphors
• Phase transition from water to ice (physics)
• Community formation (sociology)



Density in the Real World

• In the Facebook, density is about 120.

• Romantic relationships, density = 0.8.



N = 50,p = 0.01.



N = 50,p = 0.015



N = 50,p = 0.02



N = 50,p = 0.03



N = 50,p = 0.05



N = 50,p = 0.08



Degree Distributions

• The degree distribution of a network, P(d), is the fraction of
nodes that have degree d .

• A network is regular of degree k if P(k) = 1 and P(d) = 0 for
all d 6= k .

• Other prominent degree distributions include a degenerate
degree distribution associated with a regular network, the
Poisson degree distribution associated with Poisson random
networks, and a scale-free distribution (or power distribution).



Degree Distributions



Degree Distributions



Scale-Free Distributions

• A scale-free distribution P(d) satisfies

P(d) = cd−γ

where c > 0 is a scalar which depends on the support of the
distribution.

• If we increase the degree by a factor k , then we end up with a
frequency that goes down by a factor of k−γ . That is,
P(2)/P(1) is the same as P(20)/P(10).

• Scale-free distributions are often said to exhibit a power law,
with reference to the power function d−γ .



Comparing a Scale-Free Distribution to a Poisson Distribution



Scale-Free Distributions

• Scale-free distributions have “fat tails,” as there tend to be
many more nodes with very small and very large degrees than
one would see if the links were formed completely
independently.

• Scale-free distributions are linear when plotted on a log-log
plot. If we rewrite P(d) = cd−γ by taking logs of both sides,
we obtain

log(f (d)) = log(c)− γlog(d).

This allows us to estimate γ from data, as a linear regression
can be used.



Comparing a Scale-Free Distribution to a Poisson Distribution:
LOG-LOG Plot



Comparing a Scale-Free Distribution to an Exponential Network:
LOG-LOG Plot



Detour on Web search: PageRank (Ch 14.2 in Easley and
Kleinberg)



Influence and Web Search

• When you search for something online what happens?
1 You ask for a list of pages with information about some term

• “University of Georgia”
• “Matrix multiplication”
• “aquarium plants dying”

2 your search engine gathers up pages with the corresponding
term

3 the results are displayed to you in some order

Question: How to order the search results in a useful way?



Influence begets influence

• Idea: We want to see the most influential pages first

• Why?
• Important pages are most frequently cited by other pages
• This is analogous to citation in the scientific literature
• court cases; patent decisions

• Problem: Any page can get lots of links

• Solution: Weight links (citations) from highly cited nodes
(papers) more heavily

• This idea forms the basis for the PageRank measure of node
importance/influence.



Influence begets influence

• So the proposal is to define influence (PageRank) in terms of
the influence of the pages that link to it.

• The logic seems circular, but can work

• PageRank was the dominant algorithm for ranking pages at
Google for many years.

• Ranking algorithms are a moving target
• manipulation is possible if you know the algorithm
• big incentives to engage in manipulation



A Network of Webpages

A
collection of 8 pages. A has the largest PageRank, followed by B

and C , which collect endorsements from A.



Computing PageRank

Computing PageRank
1 Assign all nodes, i , PageRank Pi = 1

n .

2 Choose number of steps k
3 Perform k updates, where each update does the following:

• Each page “sends” an equal share of its existing PageRank to
the pages it points to.

• If a page points to no other pages, it keeps its PageRank for
itself.

• The PageRank of each page is recomputed as the sum of all
the PageRank it just received over its incoming links.



Remarks

• Network starts with one unit of PageRank

• PageRank is “conserved” as it “flows” through the update
steps.

• Intuitively, equilibrium is achieved when the flow in equals
flow out for every node.



Computing PageRank: Example

Step A B C D E F G H

1 1/2 1/16 1/16 1/16 1/16 1/16 1/16 1/8

2 3/16 1/4 1/4 1/32 1/32 1/32 1/32 1/16



Equilibrium PageRank

• Equilibrium concept
• If we start the nodes at the equilibium
• and apply one update step
• they end with the same PageRank they started with

Claim: There is always an equilibrium distribution of
PageRank (except in certain degenerate cases.)



QUIZ

1

23

Is the following an equilibrium allocation of PageRank?

node PageRank

1 1/2
2 1/2
3 0

• NO.
• In the next update we get

node PageRank

1 0
2 1/2
3 1/2
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QUIZ

1
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Is the following an equilibrium allocation of PageRank?

node PageRank

1 1/2
2 1/2
3 0

• NO.
• In the next update we get

node PageRank

1 0
2 1/2
3 1/2



Sinks and Degenerate Equilibria

1

23

QUESTION: What is the unique equilibrium distribution of
PageRank?
• Answer:

node PageRank

1 1
2 0
3 0

• All of the PageRank “pools” at Node 1.



Sinks and Degenerate Equilibria

1

23

QUESTION: What is the unique equilibrium distribution of
PageRank?
• Answer:

node PageRank

1 1
2 0
3 0

• All of the PageRank “pools” at Node 1.



Uniqueness of Equilibrium

• You can prove the following:
• If the network is strongly connected, then the equilibrium

PageRank distribution
• exists,
• and is unique.

• (Recall: Strongly connected means there is a directed path
between from any node to any other node.)

• As the graph above indicates, strong connectivity is easy to
violate



Scaled PageRank Update

The solution? Make it rain!
Specifically, modify the update step as follows

• After the update, take a fraction, α, of PageRank from every
node

• Reallocate the α PageRank uniformly to all nodes.

This is called the scaled PageRank Update



Equilibrium in Scaled PageRank

It can be proven that...

• If you repeat the scaled PageRank update k times, as k goes
to infinity

• The distribution of PageRank values
• Will converge
• the set of values it converges to will be unique

• Note that the equilibrium depends on the scaling factor, α.



Random Web Surfer

• Alternative derivation / interpretation: A Random Surfer
• Imagine someone surfing the web, starting from a random page
• She takes a random walk that follows k links
• Claim: The probability of being at page i after k steps is the

PageRank of i after k applications of the basic PageRank
update.

• Proof in Section 14.6 (advanced).



Page ranking in real life

• Google, Ask, Bing, etc. now use highly complex search and
reporting algorithms

• Changes to these algorithms have big costs for companies
• Moving from the first to second page of search results is costly
• Moving from second to first result has a big payoff

• Search Engine Optimization (SEO) is a major industry.

• The “perfect” ranking is always a moving target, because the
structure of the web evolves as pages (nodes) game the
system.



Eigenvector Centrality

• The eigenvector centrality of a node is proportional to the
sum of the centrality of its neighbors:

λC e
i (g) = ΣjgijC

e
j (g).

• In terms of matrix notation,

λC e(g) = gC e(g),

where λ is a proportionality factor. Thus, C e(g) is an
eigenvector of g , and λ is its corresponding eigenvalue.
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Comparison of Centrality Measures



Closeness Centrality



Betweeness Centrality



Eigenvector Centrality



The Graph of Thrones!
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