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Introduction and stats review

Review syllabus and expectations

Introductory material and statistics review
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Three Types of Empirical Research
Descriptive analysis

Establish facts about economic reality that need to be
explained by theoretical reasoning and yield new insights about
economic phenomena

Non-causal prediction

Using known quantitative information to predict either future
events or other relevant associations

Causal prediction (or “causal inference”)

Seeks to determine the effects of particular interventions and
policies, or to estimate the behavioral relationships suggested
by economic theory
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What do we mean by “Scientific Methodology”?

Scientific methodology is the
epistemological foundation of
our scientific knowledge

Science does not collect
evidence in order to “prove”
what people already believe
or want others to believe.

Science accepts unexpected
and even undesirable answers.

Science is process oriented,
not outcome oriented.
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Causality statements over time
Potential outcomes and counterfactuals

I John Stuart Mill: “If a person eats of a particular dish, and dies in
consequence, that is, would not have died if he had not eaten it, people
would be apt to say that eating of that dish was the source of his death.”

I Roland Fisher: “If we say, ‘This boy has grown tall because he has been
well fed,’ ... we are suggesting that he might quite probably have been
worse fed, and that in this case he would have been shorter.”

Experimentation as a source of knowledge
I Stock and Watson: “A causal effect is defined to be the effect of a given

action or treatment, as measured in an ideal, randomized controlled
experiment. In such an experiment, the only systematic reason for
differences in outcomes between the treatment and control groups is the
treatment itself.”

Physical randomization
I William Sealy Gossett: “If now the plots had been randomly placed...”
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Why randomization?
How to recognize causal questions

I “What randomized experiment would I have run if I were a dictator with infinite
resources?”

I But what if randomization may be unethical, expensive, or simply infeasible?

Observational (“non-experimental”) studies vs. Randomized experiment
I In a controlled experiment, study participants are randomly selected to receive

some intervention (“treatment”) or some “placebo”, usually by the researcher
designing the experiment

I In an observational study, study participants self-select themselves to receive the
treatment

I So what? Both have a treatment group and a control so why is this distinction
important?

Example: What is the causal effect of smoking on lung cancer?
I What randomized experiment would you run if you were a dictator with infinite

resources, and discuss any practical limitations?
I Describe the differences between those in the treatment group and control group

prior to the experiment beginning under randomization?

Describe an alternative observational study. What do we gain and what do we lose
when we forego randomization? How important is that?
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What is a “counterfactual”?

Causality is based on comparisons between reality and
hypothetical “what-if” scenarios, or “counterfactual”

Counterfactuals in popular culture
I It’s a Wonderful Life: George Bailey
I A Christmas Carol by Charles Dickens and Ebinezer Scrooge

Example: Amy is a lifelong smoker recently diagnosed with lung
cancer. Did smoking cause her lung cancer? It did if and only if
Amy would not have gotten lung cancer had she not smoked.

But how can we know if something causes something else if
causality requires comparing two states of the world, but we only
have one?
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Well-defined causal states
Causal claim: Uggen and Manza (2002) claim that Al Gore would have won the
2000 presidential election had felons and ex-felons been allowed to vote.

I Restrictions on votes → who votes → who wins election

But. . . if in this hypothetical world, (ex-)felons could vote, might anything else
relevant to outcomes changed?

I Would Gore and Bush have run on different policies?
I Would that different campaign have affected other votes?
I Would someone other than Gore and/or Bush have run?

Causal question are implicitly ceteris paribus statements – “holding everything
except for the intervention and the potential outcomes constant”

“When a ceteris paribus assumption is relied on to rule out other
contrasts that are nearly certain to occur at the same time, the posited
causal states are open to the charge that they are too metaphysical to
justify the pursuit of causal analysis.” - Morgan and Winship (p. 33)

We call causal states “well-defined” if the reliance on the ceteris paribus
assumption is plausible – but never forget that this assumption is critical and one
you have to seriously contemplate yourself
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Brief review of summation and expectation
Summation Operator

n∑
i=1

xi ≡ x1 + x2 + . . . + xn (1)

Properties of the Summation operator
1 For any constant c :

n∑
i=1

c = nc (2)

2

n∑
i=1

cxi = c
n∑

i=1

xi (3)

3 For any constant a and b:
n∑

i=1

(axi + byi) = a
n∑

i=1

xi + b
n∑

i=1

yi (4)
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Sum of the quotients does not equal the quotient of the sums:

n∑
i=1

xi
yi
6=
∑n

i=1 xi∑n
i=1 yi

(5)

Sums of squared does not equal the sum squared:

n∑
i=1

x2
i 6=

(
n∑

i=1

xi

)2

(6)

The average (mean) can be computed as

x̄ =
1

n

n∑
i=1

xi =
x1 + x2 + . . . + xn

n
(7)

and the sum of the deviations from the mean:
n∑

i=1

(xi − x̄) = 0 (8)
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One result that will be very useful throughout the semester is:

n∑
i=1

(xi − x̄)2 =
n∑

i=1

x2
i − n(x̄)2 (9)

and more generally,

n∑
i=1

(xi− x̄)(yi− ȳ) =
n∑

i=1

xi(yi− ȳ) =
n∑

i=1

(xi− x̄)yi =
n∑

i=1

xiyi−n(x̄ ȳ)

(10)
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Expected Value
The expected value of a random variable, also called the
expectation and sometimes the population mean is simply the
weighted average of the possible values that variable can take, with
the weights being given by the probability of each value ”happening”
in the population.

Suppose the variable X can take values x1, x2, . . . , xk with
probability f (x1), f (x2), . . . , f (xk), respectively.

E (X ) = x1f (x1) + x2f (x2) + . . . + xk f (xk) =
k∑

j=1

xj f (xj) (11)
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For Example: if X takes on values −1, 0, and 2 with probabilities
0.3, 0.3, and 0.4, respectively,

E (X ) = (−1)(0.3) + (0)(0.3) + (2)(0.4) = 0.5 (12)

In fact you could take the expectation of a function of that variable,
say X 2. Note that X 2 take only the values 0, 1 and 4 with
probabilities 0.3, 0.3, and 0.4,

E (X ) = (−1)2(0.3)+(0)2(0.3)+(2)2(0.4) = 0.3+0+1.6 = 1.9 (13)
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Properties of Expected Values
1 For any constant c , E (c) = c
2 For any constants a and b,

E (aX + b) = E (aX ) + E (b) = aE (X ) + b
3 If we have many constants, a1, a2, . . . , an, and many random

variables, X1,X2, . . . ,Xn, then

E (a1X1+a2X2+. . .+anXn) = a1E (X1)+a2E (X2)+. . .+anE (Xn)
(14)

Using summation notation,

E

(
n∑

i=1

aiXi

)
=

n∑
i=1

aiE (Xi) (15)

In the special case in which each ai = 1:

E

(
n∑

i=1

Xi

)
=

n∑
i=1

E (Xi) (16)
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Rules of the Expectation Operator, E(.)
Expectation operators, E [x ], calculate the population mean

Let a and b be a constant number (e.g., 2, 0.94) and X, Y random
variables that take on different values (e.g., a column of student
grades for the semester)

Expectation operator follow algebraic rules:

E [a] = a (17)

E [a + bX] = a + bE [X] (18)

E [X + Y] = E [X] + E [Y] (19)

E [bX]2 = b2E [X]2 (20)

E [X + Y]2 = E [(X + Y)(X + Y)]

= E [(X2 + 2XY + Y2)]

= E [(X2] + 2E [XY] + E [Y2)] (21)



Potential Outcomes Notation
Group Cancer (Y 1) under smoking Cancer (Y 0) under no smoking

Treatment (D = 1) Observable as Y Unobservable Counterfactual

Control (D = 0) Unobservable Counterfactual Observable as Y

Potential outcomes (Y 1,Y 1): Y 1 and Y 0 are the “potential” cancer outcomes
under a lifetime of smoking (Y 1) or not (Y 0)
Intervention (D): Smoking (D) is the intervention and D ∈ {0, 1} corresponding
to “control” (D = 0) or “treatment” (D = 1)

Y = Y 1 if D = 1 (22)

Y = Y 0 if D = 0 (23)

Observed outcomes (Y ): Combining (1) and (2) with the following switching
equation:

Y = DY 1 + (1− D)Y 0 (24)

Counterfactuals: Y 1 for the D = 0 group and Y 0 for the D = 1 groups are
unobserved but exist in principle – Amy could’ve not smoked
We need to review some statistics before we can continue with definitions. . .
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Important Definitions

Definition 1: Causal effect. The causal effect of an
intervention for every individual, i , is:

δi = Y 1
i − Y 0

i (25)

Definition 2: Fundamental problem of causal inference: It
is impossible to observe both Y 1

i and Y 0
i for the same individual.

Therefore, individual causal effects are unknowable.

But . . . , it is possible using groups of units if assumptions
about treatment selection are credible
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Average Treatment Effect Definitions
Definition 3: Average Treatment Effect (ATE). Aggregated causal effects over all individuals.

E [δ] = E [Y 1 − Y 0]

= E [Y 1]− E [Y 0] (26)

Definition 4: Average Treatment Effect on the Treated (ATT). Average treatment effect for those who
typically take the treatment

E [δ|D = 1] = E [Y 1 − Y 0|D = 1]

= E [Y 1|D = 1]− E [Y 0|D = 1] (27)

Definition 5: Average Treatment Effect on the Untreated (ATU). Average treatment effect for those
who typically don’t take the treatment

E [δ|D = 0] = E [Y 1 − Y 0|D = 0]

= E [Y 1|D = 0]− E [Y 0|D = 0] (28)

Naive ATE (NATE): Difference in mean outcome for the self-selected treatment from self-selected control
groups. (Difference along the observable diagonal)

ENAIVE [δ] = EN [yi |di = 1]− EN [yi |di = 0] (29)
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Biased Naive ATE

Usually, whenever people calculate NATE, they think they are
calculating ATE. But compare ATE with NATE more closely:

ATE = E [Y 1]− E [Y 0]

NATE = EN [yi |di = 1]− EN [yi |di = 0]

All individuals in the population contribute to calculating ATE,
whereas each sampled individual is used once to estimate
EN [yi |di = 1] or EN [yi |di = 0].
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Average Treatment Effects
Units smoke Units don’t smoke

Group Y 1 Y 0 Estimated Treatment Effects
(Observed) (Unobserved counterfactual)

Treatment (D = 1) E [Y 1|D = 1] E [Y 0|D = 1] ATT = E [Y 1|D = 1]− E [Y 0|D = 1]
(Unobserved counterfactual) (Observed)

Control (D = 0) E [Y 1|D = 0] E [Y 0|D = 0] ATU = E [Y 1|D = 0]− E [Y 0|D = 0]

Averages E [Y 1] E [Y 0] ATE = E [δ] = E [Y 1]− E [Y 0]

Keep in mind: potential outcomes are not the same as treatment assignment.
We can calculate average treatment effects by averaging the columns and subtracting by rows
But if a fraction of the population, π, receives treatment (e.g., 60%), then weight averages by π

I E [Y 1] = πE [Y 1|D = 1] + (1− π)E [Y 1|D = 0]
I E [Y 0] = πE [Y 0|D = 1] + (1− π)E [Y 0|D = 0]

Conditional average treatment effects are calculated by differencing Y 1 and Y 0 by row
I ATT = E [Y 1|D = 1]− E [Y 0|D = 1], Average treatment effect on treated (e.g., typical smokers)
I ATU = E [Y 1|D = 0]− E [Y 0|D = 0], Average treatment effect on untreated (e.g., typical non-smokers)

Average treatment effect (ATE) is calculated by summing (vertically) ATT and ATU, weighted by the percent the
population in treatment (π) and control (1− π)

I ATE = E [δ] = E [Y 1]− E [Y 0] = πE [Y 1|D = 1] + (1− π)E [Y 1|D = 0] + πE [Y 0|D = 1] + (1− π)E [Y 0|D = 0]

Notice: the three causal “definitions” – ATE, ATT and ATU – contain counterfactual information and therefore by
definition cannot be calculated with data
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Naive Average Treatment Effects (NATE)
Group Y 1 Y 0 Naive ATE

Treatment (D = 1) Observable as Y –

Control (D = 0) – Observable as Y

NATE = EN [yi |di = 1]− EN [yi |di = 0]

Notice: diagonal subtraction, or just the differences in the observed groups’ mean outcomes (e.g., cancer)
Naive ATE isn’t like any of the three we discussed (ATE, ATU, or ATT)
Then what is it?
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Decomposition of NATE

Assume that a fixed portion of the population, π, always selects
into treatment, and the rest of the population, 1− π, choose
control.

Assume that π is unchanging (“fixed”) in the population and
known simply by adding up and dividing by population

Assume we “sample” the population using a large survey



Decomposition of NATE (cont.)

ATE has five elements:

E [δ] = E [Y 1]− E [Y 0]

= {πE [Y 1|D = 1] + (1− π)E [Y 1|D = 0]}
−{πE [Y 0|D = 1] + (1− π)E [Y 0|D = 0]}

Three of the five objects in equation (30) can be calculated from
our survey:

EN [di ] → π

EN [yi |di = 1] → E [Y 1|D = 1]

EN [yi |di = 0] → E [Y 0|D = 0]

But not E [Y 1|D = 0] or E [Y 0|D = 1] as they are both
counterfactual



Naive estimator, headache example
You and I have headaches which we can rank on a scale of 1 to 10, with 1 being the mildest
and 10 being a severe migraine
I took an aspirin and record my headache as a 6; you don’t take an aspirin record yours as a 5
Assume had I not taken an aspirin, my headache would’ve been a 10; had you not taken an
aspirin, your headache would’ve been a 3

Group E [Y 1|.] E [Y 0|.] Treatment effect
Me (D = 1) 6 10 ATT = E [δ|D = 1] = -4
You (D = 0) 3 5 ATU = E [δ|D = 0] = -2

E [Y 1] = 4.5 E [Y 0] = 7.5 ATE = E [Y 1]− E [Y 0] = -3
NATE = EN [Y |D = 1]− EN [Y |D = 0] = +1??

Aspirins clearly reduced headache severity for every person, ATT (-4), ATU (-2), ATE (-3)
So how is it even possible that NATE says aspirin’s caused a positive change in headache
severity of +1?
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Decomposition of NATE
Step 1. Definition of ATE (equation 30)

E [δ] = E [Y 1]− E [Y 0]

= {πE [Y 1|D = 1] + (1− π)E [Y 1|D = 0]}
−{πE [Y 0|D = 1] + (1− π)E [Y 0|D = 0]}

Step 2: Simplify

E [Y 1|D = 1] = a

E [Y 1|D = 0] = b

E [Y 0|D = 1] = c

E [Y 0|D = 0] = d

E [δ] = e

(30)

Step 3: Rewrite ATE (eq. 30’) using the above variables

e = {πa + (1− π)b} − {πc + (1− π)d}



Decomposition of NATE (cont.)
Step 4: Rearrange ATE (eq. 30’) as follows:

e = {πa + (1− π)b} − {πc + (1− π)d}
e = πa + b − πb − πc − d + πd

e = πa + b − πb − πc − d + πd + (a− a) + (c− c) + (d− d)

= e − πa − b + πb + πc + d − πd − a + a− c + c− d + d

a− d = e − πa − b + πb + πc + d − πd + a− c + c− d

a− d = e + (c− d) + a− πa − b + πb − c + πc + d − πd

a− d = e + (c− d) + (1− π)a − (1− π)b + (1− π)d − (1− π)c

a− d = e + (c− d) + (1− π)(a − c)− (1− π)(b − d)

Step 5: Substitute original values back

E [Y 1|D = 1]− E [Y 0|D = 0] = E [δ]

+(E [Y 0|D = 1]− E [Y 0|D = 0])

+(1− π)({E [Y 1|D = 1]− E [Y 0|D = 1]}
−(1− π){E 1|D = 0]− E [Y 0|D = 0]})

Step 6: Substitute equations 26, 27, 28

E [Y 1|D = 1]− E [Y 0|D = 0] = ATE

+(E [Y 0|D = 1]− E [Y 0|D = 0])

+(1− π)(ATT − ATU)
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Decomposition of NATE (cont.)

NATE = ATE

+(E [Y 0|D = 1]− E [Y 0|D = 0])

+(1− π)(ATT − ATU) (31)

NATE is equal to the ATE + the second line + the third line
I Second line is the average “baseline” differences between the

two groups in a world where neither group receives treatment
I Third line is difference between the ATT and the ATU weighted

by the share of population in control

The difference in means will only measure ATE if the second line
equals zero and the third line equals zero, otherwise NATE is a
“biased estimator of the ATE”
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Ignorable treatment assignment

What if we were to randomly assign units to receive some
treatment – say, using a coin flip or some other randomizing
device

What could we assume about the differences in the averages of
the two groups if treatment was random?
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Ignorable treatment assignment

What if we were to randomly assign units to receive some
treatment – say, using a coin flip or some other randomizing
device

What could we assume about the differences in the averages of
the two groups if treatment was random?

Can you see why the following conditions should hold under
randomization? Explain them in your own words.

E [Y 0|D = 1] = E [Y 0|D = 0] (32)

E [Y 1|D = 1] = E [Y 1|D = 0] (33)
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Ignorable treatment assignment

What if we were to randomly assign units to receive some
treatment – say, using a coin flip or some other randomizing
device

What could we assume about the differences in the averages of
the two groups if treatment was random?

Can you see why the following conditions should hold under
randomization? Explain them in your own words.

E [Y 0|D = 1] = E [Y 0|D = 0] (34)

E [Y 1|D = 1] = E [Y 1|D = 0] (35)

Recalculate NATE if equations (32) and (33) hold and explain
the results
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Ignorable treatment assignment
Substitute eq. (32) into (31)

NATE = ATE

+(E [Y 0|D = 1]− E [Y 0|D = 0])

+(1− π)(ATT − ATU)

NATE = ATE + (1− π)(ATT − ATU)

Decompose ATT-ATU using eq. (27) and (28) and rearrange

ATT − ATU = E [Y 1|D = 1]− E [Y 0|D = 1]

−E [Y 1|D = 0] + E [Y 0|D = 0]

= E [Y 1|D = 1]− E [Y 1|D = 0]

+E [Y 0|D = 0]− E [Y 0|D = 1]

Since top row is zero by equation (32) and bottom row is zero by
equation (33), NATE = ATE under randomized treatment assignment
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Ignorable treatment assignment

“Ignorable treatment assignment”, (Y 0,Y 1) ⊥⊥ D, is when units
are assigned to receive some treatment independent of their
potential outcomes

I Ignorable treatment yields equations 32-33

What do the equalities in equation 32-33 mean exactly?
I Equation 32 means units in treatment are on average the same

as those who aren’t if neither got treated
I Equation 33 means units in treatment are on average the same

as those who aren’t if both had been treated

But since each comparison contains counterfactuals, how do we
know they hold under randomization? In other words, why is
randomization so crucial?
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Ignorable treatment assignment

Randomization is not, in fact, what I want you to learn from this
exercise – equations 32-33 are what I mainly want you to
understand and notice

Randomization is special because randomization gives us gives
us credible reasons, a priori, to believe equations 32-33 will hold.

But as we will see, the rest of the class is mainly about
identifying causal effects when randomization is not available to
us. We start with this ideal situation, though, so that the causal
effect parameters are clearly defined, and so that we know
precisely what problems we face when going to data to try and
estimate them

Exercise: What if equation 32 can be credibly assumed, but
you’re not sure about equation 32? What does NATE identify?
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Stable Unit-Treatment Value Assumption (SUTVA)

Counterfactual tradition maintains an important but largely overlooked condition
called SUTVA
SUTVA stands for “stable unit-treatment value assumption”, and might be better
understood reading the acronym backwards than forwards

1 A: It’s an assumption
2 TV: that the treatment-value (or “treatment effect” or “causal effect”)
3 S: is stable
4 U: for all units, or participants

SUTVA is the a priori assumption that the value of Y for unit i will be the same
when exposed to treatment D no matter what mechanism is used to assign the
treatment D to unit i and no matter what treatments the other i units receive. It
also assumes that the treatment is the same for all units.
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SUTVA (cont)
Causal effect definitions in this tradition always require SUTVA

1 Every person receives the same dosage
2 Potential outcomes of individuals must be unaffected by potential

changes in the treatment exposures of other individuals

Example of SUTVA violation: Externalities from treatment
I When I took my aspirin, my headache was recorded as a 6. What if

everyone in my family was given aspirin at the same time as me, and in
so doing, I had recorded my headache as a 3? Why might more of us
taking aspirin change the efficacy of the treatment?

I SUTVA requires that treatment effects be invariant to how many are in
treatment or control – treatment effects are “stable”, because they are
based on “ceteris paribus” assumptions holding

Another form of SUTVA violation: Heterogeneity in dosage
I I get regular aspirin, but someone else gets extra strength. SUTVA is

violated because our treatments are not the same.
I Heterogeneity in dosage, in other words, violates SUTVA. But

heterogenous treatment effects are fine
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History of graphical causal modeling in science

Path diagrams were developed by Sewell Wright, early 20th
century geneticist, for causal inference

Sewell Wright’s father, Phillip Wright, used them to prove the
existence of the “instrumental variable” estimator (see Stock
and Trebbi)

Directed acyclic graphs (DAG) are not the same thing as path
diagrams (Freedman ch. 6), though

Judea Pearl and colleagues in Artificial Intelligence at UCLA
developed DAG to help build functioning robots

Both methods use figures with arrows to illustrate causality, but
there are important and subtle differences between path analysis
and DAGs
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Three methods for causal inference

Conditioning to block back door paths (e.g., matching and
regression)

Instrumental variables, regression discontinuity and randomized
experiments

Condition variables that allows for estimation by a mechanism
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What is a DAG?
A Directed Acyclic Graph (DAG) is a set of nodes (letters and/or solid dots)
and directed edges (lines with one arrow) with no directed cycles

Z D Y

U

Nodes represent variables (e.g., Y is wage, D is education, U are unobserved
determinants of salary, Z is parental education)

I Solid circles are observed (by the researcher)
I Hollow circles are unobserved (by the researcher)

Arrows represent “direct” causal effects, and “direct” means that the
variable isn’t mediated by other variables in the graph
A causal DAG must include:

I All direct causal effects among the variables in the graph
I All common causes (even if unmeasured) of any pair of variables in the graph
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Basic DAG Concepts
Z D Y

U

U is a parent of D and Y
D and Y are descendants of Z
There is a directed path from Z to Y
There are two paths from Z to U, but no directed path
X is a collider of the path Z → D ← U
X is a non-collider of the path Z → D → Y
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Three types of directed edges

1 Chain of mediation: A → C → B
I A’s causal effect on B is “mediated” by C
I A and B are indirectly correlated – “unconditional association”

2 Fork of mutual dependence: A ← C → B
I A and B are both caused by C
I A and B are indirectly correlated (unconditional association)

3 Inverted fork of mutual causation: A → C ← B
I A and B both cause C
I C is a “collider” along non-directed path A → C ← B

F If a variable receives two arrows, it is a “collider”
F NOTE: A and B’s causal effects “collide” at C

I A and B are uncorrelated, but if we condition on the collider,
C , it will create spurious correlations between A and B
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Bias #1: Confounding and backdoor paths
1 Confounding is when the causal variable, D, and the outcome, Y , are correlated

through a fork of mutual dependence
I Ex: Assume college increases earnings, labor market discrimination lowers

minorities’ earning (with or without college), and minorities attend college less than
whites. Let D be college degree; Y earnings; and X2 the worker’s race-ethnicity.

D Y

X2

Race creates a backdoor path from D to Y through D ← X2 → Y
I Confounders create backdoor paths between causal variables and outcomes of

interest
I Backdoor path: D ← X2 → Y
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Solution #1: Blocking backdoor paths
Question: How do we isolate the effect of college on earnings under confounding?

I Answer: “Block” the backdoor path by conditioning on race (X2)

How-to-block-a-backdoor-path
1 Calculate the correlation between D and Y for every strata of X2

2 Correctly combine E [Y |D = 1,Whites]− E [Y |D = 0,Whites] and
E [Y |D = 1,Blacks]− E [Y |D = 0,Blacks]

3 Combination of the correlations for each strata of X2 yields the unbiased estimate
of ATE and can be done using multivariate regression,
stratification/subclassification, and/or matching

Visual representation of conditioning to close a backdoor path using DAGs:

D Y

X2
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Solution #1: Blocking backdoor paths (cont.)

A path is blocked if and only if:
I the path contains a non-collider that has been conditioned on,
I or the path contains a collider that has not been conditioned on

and has no descendants that have been conditioned on.

Words to live by with regards to conditioning:
I Conditioning on a non-collider blocks a backdoor path
I Conditioning on a collider opens a path (i.e., spurious

correlation)
I Not conditioning on a collider (or its descendants) blocks a path
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Solution #1: “Backdoor criterion”

Assume the directed edge, D → Y , and backdoor paths
connecting D and Y (e.g., forks of mutual dependence)

The backdoor criterion specifies the necessary and sufficient
conditions for identifying D → Y

I Conditioning on a set of variables, Z , will identify D → Y if and
only if all backdoor paths from D to Y are blocked after
conditioning on Z

Z blocks all backdoor paths if and only if each backdoor path
1 contains a chain of mediation D → Z → Y or
2 contains a fork of mutual dependence D ← Z → Y , or
3 contains an inverted fork of mutual causation D → C ← Y ,

where C and all of C ’s descendants are not in Z .
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Solution #1: Examples

Matching on all common causes is sufficient: There are
two backdoor paths from D to Y .

X1 D Y

X2

1 Backdoor path 1: D ← X1→ Y (OPEN)
2 Backdoor path 2: D ← X2→ Y (OPEN)
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Solution #1: Examples

Matching on all common causes is sufficient: There are
two backdoor paths from D to Y .

X1 D Y

X2

1 Backdoor path 1: D ← X1 → Y (CLOSED)
2 Backdoor path 2: D ← X2 → Y (CLOSED)

Conditioning on X 1 and X 2 blocks both backdoor paths and
therefore meets the backdoor criterion.

Cunningham (Baylor) Econ 4v98/5v98 Spring 2014 46 / 71



Solution #1: Examples

Matching may work even if not all common causes are
observed: U and X 1 are common causes.

D Y

X1

X2U

1 Backdoor path 1: D ← X 1→ Y (OPEN)

2 Backdoor path 2: D ← X 2← U → Y (OPEN)
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Solution #1: Examples

Matching may work even if not all common causes are
observed: U and X 1 are common causes.

D Y

X1

X2U

1 Backdoor path 1: D ← X 1 → Y (CLOSED)

2 Backdoor path 2: D ← X 2 ← U → Y (CLOSED)

Conditioning on X 1 and X 2 is sufficient to identify D → Y
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Bias #2: Conditioning on a collider

Matching on an outcome may create bias: There is only
one backdoor path from D to Y .

D Y

X2

X1

1 Backdoor path: D ← X1→ Y (OPEN)
2 Collider Path: D → X2← Y (OPEN or CLOSED?)
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Bias #2: Conditioning on a collider

Matching on an outcome may create bias: There is only
one backdoor path from D to Y .

D Y

X2

X1

1 Backdoor path: D ← X1→ Y (OPEN)
2 Collider Path: D → X2← Y (CLOSED)
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Bias #2: Conditioning on a collider

Matching on an outcome may create bias: There is only
one backdoor path from D to Y .

D Y

X2

X1

1 Backdoor path: D ← X 1 → Y (CLOSED)

2 Collider Path: D → X 2 ← Y (OPEN)

Conditioning on X 1 blocks the backdoor path, but conditioning
on X 2 opens the collider path. So what, right?
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Bias #2: Conditioning on a collider
Important: Since unconditioned colliders block back-door paths, what exactly does
conditioning on a collider do? Let’s illustrate with a fun example and some made-up data

CNN.com headline: Megan Fox voted worst – but sexiest – actress of 2009
http://marquee.blogs.cnn.com/2009/12/30/

megan-fox-voted-worst-but-sexiest-actress-of-2009/

Is this negative correlation causal? Or this is what happens when we condition on a
collider?
Assume talent and beauty are independent, but each causes someone to become a
movie star. What’s the correlation between talent and beauty for a sample of movie
stars compared to the population as a whole (stars and non-stars)?

Talent Beauty

Movie star
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Bias #2: Collider do-file (STATA)
clear all

set seed 3444

* 2500 independent draws from standard normal distribution

set obs 2500

generate beauty=rnormal()

generate talent=rnormal()

* Creating the collider variable (star)

gen score=(beauty+talent)

egen c85=pctile(score), p(85)

gen star=(score>=c85)

label variable star "Movie star"

* Conditioning on the top 15%

twoway (scatter beauty talent, mcolor(black) msize(small)

msymbol(smx)), ytitle(Beauty) xtitle(Talent) subtitle(Aspiring actors

and actresses)) by(star, total)
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Bias #2: Scatterplots
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Summary
We are working with two separate sets of conceptual tools to
clarify what is meant by “causality” – the potential outcomes
model and the DAG
These are complementary tools describing the same idea –
causality is thought of as comparing the same unit under two
potential outcomes (treatment vs control)
Decomposition of NATE reveals correlations contain additive
selection bias and treatment heterogeneity bias in addition to
true causal effects
Randomized treatment assignment removes both forms of bias
and allows NATE to identify ATE
DAGs reveal how these additive selection problems can affect
simple differences in means, as well as showcase how we might
identify the causal effects when there are problems like
confounding
Conditioning on a collider introduces spurious correlation and
biasing statistical estimates
The rest of the semester will be devoted to strategies that
identify causal effects
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Fundamental problem of causal inference is missing data: we do not
observe workers under both potential outcomes We have to find
someone else to substitute for John’s unobserved counterfactual state
What’s different about John’s counterfactual?

Finding a credible counterfactual substitute is the crux of all sound
causal inference

The best counterfactual substitutes are exchangeable – it’s all about
the comparison group!

Randomization is an important part of this because randomization
ensures that the many other factors that also determine wages in the
population have been equally distributed between the potential
outcomes
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Example: Does Information Matter?

We want to estimate the effect on voting behavior of paying
attention to an election campaign

Survey research consistently finds a largely ignorant voting public
(e.g., Berelson, Lazasfeld, and McPhee 1954; Campbell,
Converse, Miller and Stokes 1960; Zaller 1992)

There’s the fact of public ignorance and there’s the meaning of
public ignorance – although the fact of public ignorance is largely
accepted, the meaning has been challenged (Sniderman 1993).

Can voters use information such as polls, interest group
endorsements and partisan labels to vote like their better
informed compatriots (e.g., Lupia 2004; McKelvey and
Ordeshoot 1985a,b, 1986)
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Fundamental Problem of Causal Inference

Fundamental problem: we aren’t observing all of the potential
outcomes or counterfactuals. Frame the question using potential
outcomes notation.

Let Yi1 denote voter i ’s vote intention when voter i learns during
the campaign

I Call this the treatment group

Let Yi0 denote voter i ’s vote intention when voter i does not
learn during the campaign

I Call this the control group
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Fundamental Problem of Causal Inference
Let Ti be a treatment indicator: 1 when i is in the treatment

group and 0 in the control group.

The observed outcome for observation i is:
I Yi = TiYi1 + (1− Ti )Yi0.

If Ti = 1, . . .
I Yi = 1Yi1 + (1− 1)Yi0

I Yi = Yi1

If Ti = 0, . . .
I Yi = 0Yi1 + (1− 0)Yi0

I Yi = Yi0

And the treatment effect for i is . . .
I Yi1 − Yi0

Note that the causal effect of learning is the difference in the
observed outcome to the counterfactual (i.e. the outcome
when the voter did not learn).
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Experimental Data

If assignment to treatment is randomized, the inference problem
is simple because the two groups are from the same population.

I {Yi1,Yi0 ⊥ Ti}
I ⊥ means that the two potential outcomes, Yi1 and Yi0 are

independent of the treatment itself
I This is not the same thing as saying that the treatment does

not affect the outcome

Observations in the treatment and control groups are not exactly
the same, but they are comparable – they are exchangeable

Hence, for j = 0, 1 we have exchangeability:

E (Yij |Ti = 1) = E (Yij |Ti = 0) = E (Yi |Ti = j)
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What to match on: a brief introduction to DAGs
A Directed Acyclic Graph (DAG) is a set of nodes (vertices) and
directed edges (arrows) with no directed circles

Z X

U

Y

Nodes represent variables

Arrows represent direct causal effects (“direct” means not
mediated by other variables in the graph)

A causal DAG must include
I All direct causal effects among the variables in the graph
I All common causes (even if unmeasured) of any pair of

variables in the graph
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Some DAG concepts

In the DAG:

Z X

U

Y

U is a parent of X and Y

X and Y are descendants of Z

There is a directed path from Z to Y

There are two paths from Z to U (but no directed path)

X is a collider of the path Z → X ← U

X is a noncollider of the path Z → X ← Y
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Confounding
Confounding arises when the treatment and the outcomes have
common causes

D

X

Y

The association between D and Y does not only reflect the
causal effect of D on Y
Confounding creates backdoor paths, that is, paths starting
with incoming arrows
In the DAG, we can see a backdoor path from D to Y
(D ← X → Y )
However, once we “block” the backdoor path by conditioning on
the common cause X , the association between D and Y is only
reflective of the effect of D on Y

D

X

Y
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Blocked paths
A path is blocked if and only if:

It contains a noncollider that has been conditioned on

Or it contains a collider that has not been conditioned on and
has no descendents that have been conditioned on

Examples:
1 Conditioning on a noncollider blocks a path:

X Z Y

2 Conditioning on a collider opens a path:

Z X Y

3 Not conditioning on a collider (or its descendents) leaves a path
blocked:

Z X Y

Cunningham (Baylor) Econ 4v98/5v98 Spring 2014 63 / 71



Backdoor criterion

Suppose that
I D is a treatment
I Y is an outcome
I X1, ...,Xk is a set of covariates

Is it enough to match on X1, ...,Xk in order to estimate the
causal effect of D on Y ?

?’s (?) backdoor criterion provides sufficient conditions

Backdoor criterion: X1, ...,Xk satisfies the backdoor criterion
with respect to (D,Y ) if:

1 No element of X1, ...,Xk is a descendent of D
2 All backdoor paths from D to Y are blocked by X1, ...,Xk

If X1, ...,Xk satisfies the backdoor criterion with respect to
(D,Y ), then matching on X1, ...,Xk identifies the causal effect
of D on Y
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Implications for practice I

Matching on all common causes is sufficient
I There are two backdoor paths from D to Y

X1 D

X2

Y

I Conditioning on X1 and X2 blocks the backdoor paths
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Implications for practice II

Matching may work even if not all common causes are
observed

I U and X1 are common causes

U X2

X1

D Y

I Conditioning on X1 and X2 is enough
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Implications for practice III

Matching on an outcome may create bias
I There is only one backdoor path from D to Y

X1 D

X2

Y

I Conditioning on X1 blocks the backdoor path
I Conditioning on X2 would open a path!
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Implications for practice IV

Matching on all pretreatment covariates is not always the
answer

I There is one backdoor path and it is closed

X

U1

U2

D Y

I No confounding; conditioning on X would open a path!
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Implications for practice V

There may be more than one set of conditioning variables
that satisfy the backdoor criterion

X3

X1

X2

D Y

X3

X1

X2

D Y
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Implications for practice VI

I Conditioning on the common causes, X1 and X2, is sufficient, as
always

I But conditioning on X3 only also blocks the backdoor paths
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DAGs: final remarks
The backdoor criterion provides a useful graphical test that can
be used to select matching variables
The backdoor criterion is only a set of sufficient conditions, but
covers most of the interesting cases

I There are general results (?)
Applying the backdoor criterion requires knowledge of the DAG

I There are results on the validity of matching under limited
knowledge of the DAG (?)

I Suppose that there is a set of observed pretreatment covariates
and that we know if they are causes of the treatment and/or
the outcomes

I Suppose that there exists a subset of the observed covariates
such that matching on them is enough to control for
confounding

I Then, matching on the subset of the observed covariates that
are either a cause of the treatment or a cause of the outcome or
both is also enough to control for confounding
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