FORECAST ACCURACY AND ERROR EVALUATION

 

Two means of measuring forecast accuracy:

            1.  Examine ex post error terms

            2.  Simulate ex ante error terms

 

Graphical methods of model evaluation:

            1.  Time series examination of actual and potential values

            2.  Time series examination of error patterns

            3.  Control charts for cumulative error terms (a measure of cumulative    bias)

            4.  Plot of actual versus predicted values (line of perfect forecasts)

            5.  Diagram of turning actual versus predicted change (turning point        accuracy)

 

Statistical methods of model evaluation

            1.  Proportion of false signals and missed signals

 

Actual

No TP

TP

No TP

NN  (correct)

NT  (wrong)

TP

TN..(wrong)

TT  (correct)

 

            Proportion of false signals = NT/(NT + TT)

            Proportion of missed signals = TN/(TN + TT)

 

            2.  Mean squared error and root mean squared error

            3.  Mean absolute error

            4.  Mean absolute percentage error

            5.  Mean error (a measure of bias) and mean percent error (a measure of bias)

            6.  Root percent mean square.