
Banking Panics and Policy Responses

Huberto M. Ennis
Research Department, Federal Reserve Bank of Richmond

Huberto.Ennis@rich.frb.org

Todd Keister
Research and Statistics Group, Federal Reserve Bank of New York

Todd.Keister@ny.frb.org

September 18, 2009

Abstract

We study how banking panics unfold in a version of the Diamond and
Dybvig (1983) model with limited commitment. As is well known, the
banking authority could eliminate the possibility of a run on the banking
system by committing to suspend payments to depositors if a run were to
start. Once a run is under way, however, the banking authority will choose
to reschedule, rather than suspend, payments. We construct equilibria in
which depositors run on the banking system with positive probability, and
we show that an equilibrium bank run in this setting is necessarily partial,
with only some depositors participating. We also show that a run naturally
occurs in waves, with each wave of withdrawals prompting a further policy
response from the banking authority. The number of waves that occur in
equilibrium is stochastic and can be arbitrarily large.
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1 Introduction

Banking crises often feature a run by depositors, that is, an event in which many depositors rush

to withdraw their funds from the banking system in a short period of time. Such runs occurred reg-

ularly in the United States in the late 19th and early 20th centuries and have occurred more recently

in Argentina (in 2001), Russia (in 2004), and elsewhere. Other types of financial institutions and

some financial markets have also experienced runs in which investors rush to withdraw funds or

sell assets. Competing explanations have been offered for these events. Some observers claim that

runs are invariably caused by fundamental factors such as a deterioration of banks’ asset positions

or an unusually high level of liquidity demand. Others, however, believe that these runs often

have a self-fulfilling nature: each individual withdraws because the withdrawals of others threaten

the solvency of the banks or the market value of some assets. In this view, a run represents a

coordination failure.

A growing literature asks whether this latter explanation is plausible from the standpoint of

modern economic theory. Can self-fulfilling runs be explained as equilibrium outcomes of a formal

economic model? The answer to this question has important policy implications, particularly

regarding the design – and even the desirability – of deposit insurance systems and other elements

of the financial safety net. The existing literature has focused predominantly on the potential for

self-fulfilling bank runs and has produced mixed results, as evidenced by Green and Lin (2003)

and Peck and Shell (2003). In general, however, it is clear that constructing a model in which

self-fulfilling runs occur as an equilibrium phenomenon has proven to be difficult.

We depart from this literature by removing the (implicit) assumption that the banking authority

can commit to follow a particular course of action in the event of a crisis. Studying an environment

without commitment seems natural when considering bank runs and other crises; it amounts to

assuming that policy makers are unable to commit not to intervene if an (ex post) improvement in

resource allocation is possible. We show that self-fulfilling runs easily emerge in such a setting.

Moreover, the run equilibria in our model have a rich structure with several novel features.

To see why the issue of commitment is so important, consider the canonical model of Diamond

and Dybvig (1983). Individual agents are unsure about when they will need to consume and,

therefore, pool their resources in a bank for insurance purposes. Assume there is no uncertainty

about the aggregate “fundamental” demand for withdrawals. In an environment with commitment,
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the banking authority sets a payment schedule – a complete specification of how much it will give

to each depositor who withdraws early – before depositors make their withdrawal decisions. By

threatening to suspend payments if too many depositors withdraw early, the banking authority can

guarantee the solvency of the banking system.1 When solvency is guaranteed, it is a dominant

strategy for each depositor to wait to withdraw unless she truly needs to consume early. Hence,

commitment to an appropriate suspension plan can rule out the possibility of a bank run and can

uniquely implement the efficient risk-sharing arrangement.

In an environment without commitment, however, the response of the banking authority to a cri-

sis will be very different. Once the number of early withdrawals exceeds fundamental withdrawal

demand, the banking authority realizes that a run is underway. In earlier work (Ennis and Keister,

2009a), we showed that the full suspension policy described above, which calls for completely

suspending payments at this point, is not ex post efficient. The banking authority knows that if a

run is occurring, some of the depositors who have not yet been served have a true need to consume

early. Suspending payments means denying consumption to these individuals. A better response is

to reschedule payments (often called a partial suspension) by offering a smaller – but still positive

– payment on further early withdrawals. If depositors anticipate that the banking authority will not

completely suspend payments in response to a run, then they recognize that a run may compromise

the solvency of the banks. In this way, an ex post efficient response to a run may generate ex ante

incentives for depositors to run.2

In this paper, we study an environment in which the banking authority and all depositors fully

anticipate and optimally react to each others’ behavior, but cannot commit to future actions. We

show that when depositors are sufficiently risk averse, there exists an equilibrium of the model

in which depositors run on the banking system with positive probability. Despite the simplicity

of the environment, the structure of the equilibrium we construct is surprisingly rich. The initial

run is necessarily partial, with only some depositors participating. Once the banking authority

infers that a run is underway, it will decrease the payment offered on early withdrawals. The

run may halt at this point or it may continue, leading the banking authority to announce another,

more severe rescheduling of payments. A bank run thus occurs in “waves,” with each wave of
1 In a related model, de Nicolò (1996) shows how run equilibria can be ruled out under commitment without suspend-
ing payments by using a priority-of-claims provision on final date resources. Suspension policies have been stud-
ied in similar settings by Gorton (1985), Chari and Jagannathan (1988), and Engineer (1989).
2 Ennis and Keister (2009a) also provides a discussion of institutional features that often shape a government’s
response to a run, with a focus on events in Argentina in 2001-2 and other recent banking crises.
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withdrawals prompting a further reaction by the banking authority. The number of waves that

occur in equilibrium is stochastic and can be arbitrarily large.

This dynamic “wave” structure is fundamentally different from the type of bank run studied in

the existing literature, where depositors run either en masse or not at all. This difference stems,

in large part, from a difference in the underlying reason why the banking authority is unwilling to

suspend payments. Much of the existing literature studies environments where the total demand

for early consumption is random.3 In such settings, a large number of withdrawals could reflect

a high realization of fundamental withdrawal demand rather than a run. Peck and Shell (2003)

showed that run equilibria can exist under this approach, but these equilibria have the property

that policy makers (or an outside observer) can never distinguish a run from a high realization

of fundamental withdrawal demand, even after the fact. To us, it seems implausible to think that

throughout a run on the banking system, the authorities remain unsure whether a run is underway

or they are simply observing an unusually high level of fundamental withdrawal demand. Bank

runs are extreme events that, once fully underway, are easily recognized.

The run equilibria in our model are fully consistent with this view. In equilibrium, the banking

authority is able to infer with certainty that a partial run has taken place. The reason it does not

fully suspend payments is that doing so would cause substantial hardship for some agents. In

addition, the structure of the equilibrium is such that at each decision point, the banking authority

is optimistic that the run has ended. This optimism leads it to offer a relatively high degree of

risk sharing to the remaining depositors, which, in turn, makes it possible for the run to continue.

In this way, our model suggests that the combination of a lack of commitment with optimism on

the part of policy makers during a crisis may lie at the root of the problem of self-fulfilling runs.

We believe this is a new and potentially important insight into the fundamental causes of financial

instability.

Our analysis also contributes to a small but growing literature on discretionary policy and mul-

tiple equilibria. Most of the work on time-inconsistency issues has studied situations where the

inability of a policy maker to commit leads to an inefficient outcome in the (unique) equilibrium.

In our setting, the efficient outcome is always an equilibrium. A policy maker with commitment

power can rule out other (bank run) equilibria, but a lack of commitment power allows such equi-

3 See, for example, section IV of Diamond and Dybvig (1983), Postlewaite and Vives (1987), Wallace (1988, 1990),
de Nicolò (1996), Green and Lin (2003), Peck and Shell (2003), and Andolfatto et al. (2007).
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libria to arise. Hence, our results are more in line with the flood control example in Kydland and

Prescott (1977). In that example, a commitment to not invest in flood control would convince

private agents to not build on a flood plain. However, if the policy maker cannot commit, there is

an equilibrium in which agents build on the flood plain and, as a result, the policy maker ends up

investing in flood control.4 This second type of inefficiency resulting from a lack of commitment

power has been studied in the context of fiscal policy by Glomm and Ravikumar (1995) and in the

context of monetary policy by Albanesi, et al. (2003) and King and Wolman (2004). Our analy-

sis shows how these same forces naturally generate self-fulfilling bank runs in the well-known

Diamond-Dybvig framework.

The rest of the paper is organized as follows. In the next section, we describe the environment

and the decisions of depositors for a given payment schedule. In Section 3, we define equilibrium

for both the commitment and the no-commitment case. We also show that there exists an equi-

librium in which no run occurs and the first-best allocation obtains in each case. In Section 4,

we show that bank runs cannot occur in the environment with commitment. Section 5 contains the

main result: bank runs can occur in the no-commitment case; we also derive some properties of the

run equilibria. Sections 6 and 7 contain a discussion of the results and some concluding remarks.

2 The Model

We work with a fairly standard version of the Diamond-Dybvig model with an explicit sequen-

tial service constraint. We begin by describing the physical environment and deriving the first-best

allocation in this environment.

2.1 The environment

There are three time periods: t = 0, 1, 2. There is a continuum of agents, whom we refer to as

depositors, indexed by n ∈ [0, 1]. Each depositor has preferences given by

u (c1, c2; θn) =
(c1 + θnc2)

1−γ

1− γ
,

where ct is consumption in period t and θn is a binomial random variable with support Θ = {0, 1}.

4 See King (2006) for a more formal analysis of this problem.
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As in Diamond and Dybvig (1983), we assume that the coefficient of relative risk aversion γ is

greater than 1. If the realized value of θn is zero, depositor n is impatient and only cares about

consumption in period 1. A depositor’s type θn is revealed to her in period 1 and remains private

information. Let π denote the probability with which each individual depositor will be impatient.

By a law of large numbers, π is also the fraction of depositors in the population who will be

impatient.5 Note that π is non-stochastic; there is no aggregate (intrinsic) uncertainty in this model.

The economy is endowed with one unit of the good per capita in period 0. As in Diamond

and Dybvig (1983), there is a single, constant-returns-to-scale technology for transforming this

endowment into consumption in the later periods. A unit of the good invested in period 0 yields

R > 1 units in period 2, but only one unit in period 1.

There is also a banking technology that allows depositors to pool resources and insure against

individual liquidity risk. The banking technology is operated in a central location. As in Wallace

(1988, 1990), depositors are isolated from each other in periods 1 and 2 and no trade can occur

among them. However, each depositor has the ability to visit the central location once, either in

period 1 or in period 2 and, hence, a payment can be made to her from the pooled resources after

her type has been realized. We refer to the act of visiting the central location as withdrawing from

the banking technology.

Depositors’ types are revealed in a fixed order determined by the index n; depositor n discovers

her type before depositor n0 if and only if n < n0. A depositor knows her own index n and,

therefore, knows her position in this ordering.6 Upon discovering her type, each depositor must

decide whether or not to visit the central location in period 1. If she does, she must consume

immediately; the consumption opportunity in period 1 is short-lived. This implies that the payment

a depositor receives from the banking technology cannot depend on any information other than the

number of depositors who have withdrawn prior to her arrival. In particular, it cannot depend on

the total number of depositors who will withdraw in period 1, since this information is not available

when individual consumption must take place. This sequential-service constraint follows Wallace

5 There are well-known technical issues associated with the formal statement of the law of large numbers in an
economy with a continuum of agents. We ignore the technical details here and refer the reader to Al-Najjar (2004) for a
discussion, references, and a possible way to deal with such issues.
6 This construction follows Green and Lin (2000) and is a simplified version of that in Green and Lin (2003).
None of our results depend on the assumption that depositors know this ordering. Exactly the same results would obtain
if depositors made their withdrawal decisions before this ordering is realized (as in Diamond and Dybvig 1983, Peck
and Shell 2003, and others), only the details would be more complex in some cases. We further discuss the role
of this assumption in Section 6.4.
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(1988, 1990) and captures an essential feature of banking: the banking system pays depositors as

they arrive to withdraw and cannot condition current payments to depositors on future information.

Under sequential service, the payments made from the banking technology in period 1 can

be summarized by a (measurable) function x : [0, 1] → R+, where the number x (μ) has the

interpretation of the payment given to the μth depositor to withdraw in period 1. Note that the

arrival point μ of a depositor depends not only on her index n but also on the actions of depositors

with lower indexes. In particular, μ will be strictly less than n if some of these depositors choose

not to withdraw in period 1. In period 2, we can, without loss of generality, set the payment to

each depositor equal to an even share of the matured assets in the banking technology.7 Therefore,

the operation of the banking technology is completely described by the function x, which we call

the banking policy. Feasibility of the banking policy requires that total payments in period 1 not

exceed the short-run value of assets, even if all depositors choose to withdraw in that period, that

is, Z 1

0

x (μ) dμ ≤ 1. (1)

We summarize the behavior of depositor n by a function yn : Θ → {0, 1} that assigns a

particular action to each possible realization of her type. Here yn = 0 represents withdrawing

in period 1 and yn = 1 represents waiting until period 2. We refer to the function yn as the

withdrawal strategy of depositor n, and we use y to denote the profile of withdrawal strategies for

all depositors.

An allocation in this environment consists of an assignment of consumption levels to each

depositor in each period. An individual depositor’s consumption is completely determined by the

banking policy x, the profile of withdrawal strategies y, and the realization of her own type θn. We

can, therefore, define the (indirect) expected utility of depositor n as a function of x and y, that is,

vn (x, y) = E [u (c1,n, c2,n; θn)] ,

where E represents the expectation over θn. Different depositors may have different equilibrium

utility levels even if they follow the same strategy and have the same realized type because they

7 In principle, some type of payment schedule could be applied in period 2 as well. However, since depositors are risk
averse and all information about their actions has been revealed at this point, it will always be optimal to divide
the assets evenly among the remaining patient depositors. Importantly, the type of priority-of-claims provision studied
in de Nicolò (1996) would never be used in our setting because it is ex post inefficient.
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would arrive to withdraw at different points in the period-1 ordering. Define U to be the integral

of all depositors’ expected utilities, i.e.,

U (x, y) =

Z 1

0

vn (x, y) dn. (2)

This expression can be given the following interpretation. Suppose that, at the beginning of period

0, depositors are assigned their index n randomly, with each depositor having an equal chance of

occupying each space in the unit interval. Then U measures the expected utility of each depositor

before places are assigned. We use U as our measure of aggregate welfare throughout the paper

(as in Green and Lin 2000, 2003).

2.2 The first-best allocation

Consider the problem of a benevolent social planner who can observe depositors’ types as they

become known and can directly control the banking technology and the time of withdrawal by

depositors. The planner can choose how much and in which period each depositor consumes,

contingent on types and subject to the sequential service restriction described above. We call the

allocation this planner would generate the (full information) first best.

The problem of finding this allocation can be simplified using the following observations. First,

note that the planner would give consumption to all impatient depositors in period 1 and to all

patient depositors in period 2. Next, because depositors are risk averse and there is no aggregate

uncertainty, depositors of a given type will all receive the same amount of consumption. The

problem of finding the first-best allocation thus reduces to choosing numbers c1 and c2 to solve

max
{c1,c2}

π
(c1)

1−γ

1− γ
+ (1− π)

(c2)
1−γ

1− γ
(3)

subject to
(1− π)c2 = R (1− πc1)

and non-negativity constraints. The solution to this simplified problem is

c∗1 =
1

π + (1− π)A
and c∗2 =

RA

π + (1− π)A
, (4)

where

A ≡ R
1−γ
γ < 1. (5)
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Notice that RA = R
1
γ > 1, which implies c∗2 is larger than c∗1; patient depositors consume more

than impatient ones. Additionally, c∗1 > 1 holds and, hence, this allocation provides liquidity

insurance to depositors as described by Diamond and Dybvig (1983). Equivalently, one could

have the planner choose a payment schedule x and a profile of withdrawal strategies y to solve

max
{x,y}

U (x, y) . (6)

subject to the feasibility constraint (1). The solution to (6) sets yn (θn) = θn for all n and x (μ) = c∗1

for μ ∈ [0, π], where c∗1 is as defined in (4).8

The first-best allocation described here is the same allocation the planner would choose in an

environment without the sequential service constraint, where the planner could first observe all de-

positor’s types and then assign a consumption allocation. In our setting, where there is no aggregate

uncertainty, the sequential service constraint is non-binding in the planner’s problem. However,

as we discuss below, the constraint is an important restriction in the decentralized economy where

types are private information.

2.3 The depositors’ game

In the decentralized economy, each depositor chooses her withdrawal strategy as part of a non-

cooperative game. It will often be useful to fix the banking policy x and look at the game played

by depositors under that particular policy. Let y−n denote the profile of withdrawal strategies for

all depositors except n. An equilibrium of this game is then defined as follows.

Definition 1: Given a policy x, an equilibrium of the depositors’ game is a profile of strategiesby (x) such that
vn (x, (by−n, byn)) ≥ vn (x, (by−n, yn)) for all yn, for all n.

Because they are isolated, depositors do not directly observe each others’ actions. Therefore, even

though these actions take place sequentially, we can think of depositors as choosing their strategies

simultaneously (as in Green and Lin 2003).

The depositors’ game has been the focus of the literature on bank runs since Diamond and

8 Since only the π impatient depositors will withdraw in period 1, the payments for μ > π will not occur and need not
be specified. Also, any allocation that differs from the one given here only in the consumption of a set of depositors
of measure zero will yield the same value of U and, hence, also be first best. To simplify the presentation, we
ignore issues involving sets of measure zero and refer simply to the first-best allocation.
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Dybvig (1983). For some policies x, this game may not have a unique equilibrium.9 We use bY (x)
to denote the set of equilibria associated with the policy x. We say that a bank run occurs in an

equilibrium by if more than π depositors withdraw in period 1. Since all impatient depositors will

choose to withdraw in period 1, a run occurs if and only if some patient depositors withdraw early,

i.e., byn (1) = 0 for a positive measure of depositors.

Diamond and Dybvig (1983) showed how a banking policy resembling a simple demand-deposit

contract can implement the (full information) first-best allocation as an equilibrium of this game,

even though depositors’ types are private information. Suppose the policy is given by

x (μ) =

½
c∗1 for μ ∈ [0, bμ]
0 otherwise

¾
with bμ = (c∗1)−1 . (7)

The value of bμ is the point at which the funds in the banking technology would be completely

exhausted in period 1; this policy satisfies the feasibility constraint (1) by construction. Under this

policy, each depositor has the option of withdrawing her deposit at face value (c∗1) in period 1, as

long as funds are available.

It is fairly easy to see that (i) the strategy profile yn (θn) = θn is an equilibrium of the depositors’

game under this policy and (ii) this equilibrium implements the first-best allocation. In fact, this

same result will hold under any policy that offers c∗1 to the first π depositors to withdraw. The

payments x (μ) for μ > π are not made under this strategy profile (or under unilateral deviations

from it) and are, therefore, irrelevant for the existence of this equilibrium. The converse of this

statement is also true: in order for a policy to implement the first-best allocation in the depositors’

game, it must be the case that the payment c∗1 is offered to the first π depositors to withdraw.

We thus have a sharp characterization of the set of policies capable of implementing the first-best

allocation.

Proposition 1 The policy x implements the first-best allocation as an equilibrium of the deposi-
tors’ game if and only if it satisfies

x (μ) = c∗1 for μ ∈ [0, π] . (8)

9 The global games approach of Carlsson and van Damme (1993) has been applied in a variety of settings to generate
a unique equilibrium in this type of coordination game. As is clear from Goldstein and Pauzner (2005), however,
applying this approach to the Diamond-Dybvig environment requires making strong (and somewhat implausible)
assumptions about the investment technology and placing ad hoc restrictions on the banking policy.
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3 Equilibrium

We now turn our attention to the overall banking game, which includes the determination of the

policy x. We assume the banking technology is operated by a benevolent banking authority (BA),

whose objective is to maximize the welfare function U . The BA is a reduced-form representation

of the entire banking system of the economy, together with any regulatory agencies and other

government entities that have authority over the banking system. Our analysis would be exactly

the same if there were a group of profit-maximizing banks competing for deposits in period 0

and if the authority to suspend payments in period 1 were held by the (benevolent) government.

To keep the presentation simple, and in line with the previous literature, we present the model

with this system represented by a single, consolidated entity. We begin our analysis with the total

endowment deposited in the banking technology and, hence, under the control of this authority.10

3.1 Equilibrium with commitment

We say that the BA has commitment if it chooses the entire policy x before depositors make their

withdrawal decisions and cannot change any part of the policy later. The previous literature has

implicitly assumed commitment. Wallace (1988), for example, views the banking location as a

cash machine that is programmed in advance to follow a particular payment schedule. Depositors

observe the policy x and, therefore, the depositors’ game is a proper subgame of the “overall”

banking game. This focus is, naturally, on subgame perfect equilibria, where the BA sets a pol-

icy x with the knowledge that the withdrawal strategies will correspond to an equilibrium of the

depositors’ game generated by x. If there are multiple equilibria of the depositors’ game, the BA

must have an expectation about which equilibrium will be played; equilibrium of the overall game

then requires that this expectation be correct.

As is well known, there cannot be an equilibrium of the overall banking game in which a bank

run occurs with certainty. If the BA knew that depositors would run, it would set the policy in

such a way that running is not an equilibrium strategy; in other words, it would choose a “run

proof” contract (see, for example, Cooper and Ross 1998). A run can only occur in equilibrium

10 We abstract from what Peck and Shell (2003) call the “pre-deposit game” for simplicity. One can show that
if agents were allowed to choose how much of their private endowment to deposit, they would strictly prefer to
deposit everything in the banking system as long as the probability of a run is low enough. In this way, our approach is
without any loss of generality.
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if, at the time it sets its policy, the BA is unsure whether or not a run will occur.11 To allow

for this possibility, we follow the literature in permitting depositors’ withdrawal decisions to be

conditioned on an extrinsic “sunspot” variable that is not observed by the BA.12 We assume, without

any loss of generality, that the sunspot variable is uniformly distributed on S = [0, 1]. Each

depositor then chooses a strategy yn : Θ × S → {0, 1} in which her action is a (measurable)

function of the sunspot state. In equilibrium, the BA correctly anticipates the profile of withdrawal

strategies y but may not (initially) know the profile of actions because it does not observe the

sunspot state s. In particular, the BA may not know whether a run is underway until it has observed

enough actions to infer the state.

The BA does know that, in each state, play will correspond to an equilibrium of the depositors’

game generated by the chosen policy x. We represent the BA’s expectation of depositors’ play

by a selection by (x, s) from bY (x) , that is, a function with by (x, s) ∈ bY (x) for all x and all s.

In other words, the BA expects that if it chooses policy x, depositors will play by (x, s) in state

s. An equilibrium of the overall banking game obtains when the BA’s policy choice is welfare

maximizing given its expectation of depositors’ play and, given this choice, the expectation is

fulfilled. We formally define an equilibrium of the overall game with commitment as follows.

Definition 2: An equilibrium with commitment of the (overall) banking game is a pair (x∗, y∗) ,

together with a selection function by (x, s) ∈ bY (x) for all x and s, such that
(i) y∗ (s) = by (x∗, s) for each s, and

(ii)
R 1
0
U (x∗, y∗ (s)) ds ≥

R 1
0
U (x, by (x, s)) ds for all x.

This definition can be viewed as a type of correlated equilibrium, using a particular correlating

device (which we label ‘sunspots’) that is asymmetrically observed by depositors and the BA (see

Peck and Shell 1991 for this interpretation of correlated equilibrium).

It follows immediately from Proposition 1 that the overall banking game with commitment has

an equilibrium in which the first-best allocation obtains in all states. If the BA expects y∗n (θn, s) =

θn to be played, independent of s, by all depositors in response to a policy satisfying (8), then such

a policy is clearly an optimal choice for the BA, satisfying condition (ii). Proposition 1 shows that

when such a policy is chosen, the strategy profile yn (θn, s) = θn for all s and n satisfies condition
11 The issues discussed here are not unique to models of bank runs; they arise in any environment where multiple
equilibria are possible and a policymaker makes some decisions before knowing which equilibrium will be played. See
Bassetto and Phelan (2008) and Ennis and Keister (2005) for discussions of these issues in models of optimal taxation.
12 See Diamond and Dybvig (1983), Cooper and Ross (1998), and Peck and Shell (2003).
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(i). Hence, we have constructed an equilibrium of the overall banking game in which the first-best

allocation obtains in all states.

Corollary 1 The banking game with commitment has an equilibrium in which the first-best allo-
cation obtains.

Our question of interest, of course, is whether there exists another equilibrium of the banking

game in which some or all patient depositors withdraw in period 1 in some states (i.e., a run

equilibrium). The answer to this question depends crucially on the suspension component of the

policy, that is, the payments x (μ) for μ > π, and on the BA’s ability to commit to the policy. Before

addressing the issue of run equilibria, however, we describe the environment without commitment

and show that the result in Corollary 1 is unaffected by the absence of commitment.

3.2 Equilibrium without commitment

In an environment without commitment, the banking authority is not able to irrevocably set the

payment schedule before depositors choose their withdrawal strategies. Instead, the payment x (μ)

is finally determined only when it is actually made. This approach captures important features of

reality. While a banking contract is generally agreed on when funds are deposited, governments

routinely reschedule payments during times of crisis. The assumption of the no-commitment case

is that the rescheduling plan cannot be fixed in advance; it will be chosen as a best response

to whatever situation the banking authority finds itself facing. It is worth emphasizing that the

banking authority in our model is completely benevolent; its objective is always to maximize the

welfare function U . The assumption in this case, therefore, is simply that the government is unable

to commit not to intervene if a crisis is underway and an improvement in resource allocation is

possible.

We modify the model presented above to capture the notion of a lack of commitment power

in the following way. When choosing a payment x (μ) for some μ > 0, the BA must clearly

recognize that the actions of all previous depositors have already been made. In addition, the

BA cannot commit to any payments to later depositors, nor will the choice of x (μ) affect these

future payments.13 The BA therefore considers the strategies of the remaining depositors to be
13 With a large number of depositors, the payment to one individual has a negligible effect on total resources and,
hence, on subsequent decision problems. Furthermore, the isolation of depositors implies that only the individual
receiving the payment x (μ) directly observes the amount paid; all other depositors must infer the payment using
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independent of its choice of x (μ). In other words, in the environment without commitment, the

BA chooses each payment x (μ) taking the entire strategy profile y∗ as given. This is actually a

standard formulation of a policy game without commitment; see, for example, the discussion in

Cooper (1999, p.137).

The definition of equilibrium for the environment without commitment is therefore as follows.

Definition 3: An equilibrium without commitment of the (overall) banking game is a pair (x∗, y∗)

such that
(i) y∗ (s) ∈ bY (x∗) for all s, and

(ii)
R 1
0
U (x∗, y∗ (s)) ds ≥

R 1
0
U (x, y∗ (s)) ds for all x.

Notice the small but important difference between Definitions 2 and 3. In the environment with

commitment, the BA recognizes that a change in its policy will lead to a change in the behavior

of depositors as specified in the function by. Without commitment, in contrast, the BA takes the

strategies of depositors as given and must choose a best response to these strategies.

In other words, with commitment the BA can threaten drastic action (such as immediately sus-

pending payments) when faced with a run and depositors know that this threat will be carried out

if necessary. Such a response need not be ex post optimal; as long as the BA has committed to the

action, runs will not occur and the threat will not need to be carried out in equilibrium. Removing

the assumption of commitment imposes a form of credibility on the BA’s threats; a threat to sus-

pend payments will be deemed credible by depositors only if suspending is actually the BA’s best

response when faced with a run. In other words, our approach involves applying the time consis-

tency notion of Kydland and Prescott (1977) to policies that potentially lie off of the equilibrium

path of play.14

Before moving on, we note that the reasoning behind Corollary 1 above also applies to the

environment without commitment. If the BA expects yn (θn, s) = θn for all s and n, it will attempt

to implement the first-best allocation by choosing a policy satisfying (8). Given such a policy,

Proposition 1 shows that this strategy profile is indeed an equilibrium of the depositors’ game and,

the structure of equilibrium. Hence the BA cannot use changes in x (μ) as a “signal” aimed at influencing the behavior
of depositors who have not yet learned their types and whose payments have not yet been determined.
14 The related work of Bassetto (2005) is also concerned with the specification of government policy along potentially
off-equilibrium paths and shows how multiplicity of equilibria is more common than previously thought. His approach,
however, assumes commitment and only requires that announced policies be feasible along all possible paths of play.
Condition (1) ensures feasibility in our setup; in particular, suspending payments is always feasible. For us, the
ability (or inability) to commit to a policy is the critical issue.
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hence, we have constructed an equilibrium of the overall banking game.

Corollary 2 The banking game without commitment has an equilibrium in which the first-best
allocation obtains.

The difference between the environments with and without commitment, therefore, is not related

to the ability of the BA to generate the efficient allocation as an equilibrium outcome. Rather, the

key difference lies in the ability – or inability – of the BA to rule out undesirable allocations as

competing equilibrium outcomes. We address this issue formally in the next two sections.

4 The Commitment Case

The central point of Diamond and Dybvig (1983) was that the demand deposit contract de-

scribed in (7) does not uniquely (or, fully) implement the first-best allocation in the depositors’

game. Under this policy, there exists another equilibrium in which all depositors attempt to with-

draw in period 1. In this equilibrium, depositors who arrive at the BA before it runs out of funds

in period 1 receive c∗1, while depositors who arrive later (or who deviate and wait until period 2)

receive nothing. This equilibrium resembles a run on the banking system and leads to an inefficient

allocation of resources.

Could a run occur in an equilibrium of the overall banking game? Diamond and Dybvig (1983)

provided a partial answer to this question by showing how a suspension of convertibility clause

could render the first-best allocation the unique equilibrium outcome of the depositors’ game.

Suppose that instead of following (7), the BA sets

x (μ) =

½
c∗1 for μ ∈ [0, π]
0 otherwise

¾
. (9)

In other words, suppose the BA announces that after paying c∗1 to a fraction π of depositors in

period 1, it will close its doors and refuse to serve any more depositors until period 2. Then a

patient depositor will know that, regardless of how many people attempt to withdraw in period 1,

the BA will have enough resources to pay her at least c∗2 in period 2. Since c∗2 > c∗1 holds, waiting

to withdraw is a strictly dominant strategy for a patient depositor, and the only equilibrium of the

depositors’ game has yn (θn) = θn for all n, independent of the sunspot state. This policy thus
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costlessly eliminates the possibility of a bank run.15

The above reasoning implies that an equilibrium of the overall banking game with commitment

must lead to the first-best consumption allocation, with impatient depositors receiving c∗1 and pa-

tient depositors receiving c∗2 in all states. The BA’s equilibrium policy x∗ is not uniquely defined,

because many policies beside (9) will lead to the same result. However, if the equilibrium alloca-

tion had a positive measure of patient depositors withdrawing early in some states of nature, the

BA could raise welfare by switching to (9).

Proposition 2 The first-best allocation obtains in any equilibrium of the banking game with com-
mitment.

This result shows that under the assumption of commitment, bank runs cannot occur in equi-

librium because the BA has a policy tool (suspension of convertibility) that costlessly rules them

out.

5 Banking Policy without Commitment

In this section, we investigate the existence of equilibrium bank runs in the environment without

commitment. We first show that there cannot be an equilibrium in which all depositors withdraw

early in all states or even in only some states. We then derive conditions on parameter values under

which there exist “partial run” equilibria, where some patient depositors withdraw early in some

states but others always wait. We show that the fraction of depositors withdrawing early in such an

equilibrium is stochastic and can be arbitrarily close to one in some states.

5.1 No “full-run” equilibrium

It is fairly easy to see that, even in the environment without commitment, our model cannot have

an equilibrium in which all depositors choose to withdraw early with certainty. If the BA expects

all depositors to play yn = 0, independent of θn and s, its best response is to set x (μ) = 1 for all μ,

thereby dividing its assets evenly among the depositors. Under this policy, however, the payment

available to a patient depositor who deviates and withdraws in period 2 is R > 1, regardless of

the number of early withdrawals. Waiting until period 2 is then a dominant strategy for patient
15 In fact, this result does not require that the BA suspend payments right at π; it is sufficient for the BA to suspend
payments at any point where it can still afford to give more than c∗1 to depositors who are paid in period 2. As long
as this is true, the actual suspension point chosen does not matter because a suspension never occurs in equilibrium.
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depositors and, hence, there cannot be an equilibrium in which these depositors withdraw early.

A slightly more subtle argument shows that there cannot be an equilibrium in which all patient

depositors withdraw early in some states but wait until period 2 in the remaining states. To see

why, suppose depositors all follow such a strategy, that is,

yn (θn, s) =

½
θn for s > s1
0 for s ≤ s1

¾
for all n. (10)

for some s1 ∈ (0, 1) . This type of strategy profile has been discussed extensively in the literature;

see, for example, Diamond and Dybvig (1983), Cooper and Ross (1998), and Peck and Shell

(2003). Faced with this profile of strategies, the BA’s best response would be of the following

form. The first π depositors to withdraw provide no information to the BA, since the fraction of

depositors withdrawing is at least π in every state. The BA will, therefore, give some common

amount c1 to each of these depositors. The size of the payment c1 will depend on s1, of course, but

the exact amount is not important for the argument.

The BA recognizes that after π withdrawals have taken place, additional withdrawals in period

1 will only occur in states with s ≤ s1, in which case all depositors will withdraw early. Therefore,

the BA will set the payments x (μ) for μ > π so as to evenly divide its remaining assets among

the remaining depositors, since this is the best response to a run should one occur. Each of these

depositors would then receive

x (μ) = c1d ≡
1− πc1
1− π

for μ > π,

where the d subscript indicates that this payment results in an even division of the BA’s remaining

assets. Given this payment schedule, does the strategy profile in (10) represent an equilibrium of

the depositor’s game? The answer is ‘no’ because the payment available to a patient depositor who

deviates and withdraws in period 2 in states s ≤ s1 is Rc1d, which is strictly greater than c1d. A

patient depositor with n > π would, therefore, prefer to wait until period 2 to withdraw. A patient

depositor with n ≤ π may or may not prefer to wait, depending on the relative sizes of c1 and Rc1d,

but either way the strategy profile (10) is not consistent with equilibrium behavior. We summarize

this argument in the following proposition.

Proposition 3 The strategy profile (10) cannot be part of an equilibrium of the banking game
without commitment.
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5.2 A partial-run equilibrium

The result in Proposition 3 leaves open the possibility of a partial run equilibrium, in which some

depositors follow (10) and others do not. Based on the discussion above, it seems promising to

look for an equilibrium in which depositors who would arrive relatively late in period 1 choose

to wait if they are patient, while depositors who would arrive relatively early choose to withdraw

regardless of their type. Specifically, suppose the strategy profile of depositors is given by

For s > s1 : yn (θn, s) = θn for all n

For s ≤ s1 : yn (θn, s) =

½
0
θn

¾
for
½

n ≤ π
n > π

¾
.

(11)

In this subsection, we derive conditions under which this profile is part of an equilibrium of the

overall banking game.

We construct this equilibrium in two steps. First, we derive the BA’s best response to the strategy

profile in (11); let bx denote the best-response policy. We then ask under what conditions the

profile in (11) is an equilibrium of the depositors’ game generated by bx. We derive a necessary and

sufficient condition for this to be the case, and we show that the condition holds when s1 is small

enough and γ is large enough.

We calculate the BA’s best response to (11) by working backward, considering first the payments

x (μ) for μ > π. Let ψ denote the per-capita amount of resources the BA has left after the first π

withdrawals, that is,

ψ =
1−

R π
0
x (μ) dμ

1− π
.

The BA recognizes that the payments for μ > π will only take place in states s ≤ s1. If these

payments are made, therefore, the BA knows that (i) a run will have occurred, meaning that the

first π withdrawals were made by a mix of patient and impatient depositors, but (ii) all additional

withdrawals in period 1 will be made by depositors who are truly impatient. The total fraction of

depositors withdrawing in period 1 will, therefore, be π + π (1− π) = 1− (1− π)2 .16

Because depositors are risk averse, the BA will offer a common payment to all of the (impatient)

depositors who withdraw after π. We denote this payment c1,2, where the latter subscript indicates

that the payment is associated with the 2nd “stage” of the payment schedule. The BA will also give

16 Note that the withdrawals μ > 1 − (1− π)2 will never be made under the strategy profile in (11) and, hence,
the best-response levels for these payments are not determined.
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a common payment c2,2 to the (patient) depositors who withdraw in period 2. These payments will

be chosen to maximize the BA’s objective function (2) and hence will solve the following problem

max
{c1,2,c2,2}

π
(c1,2)

1−γ

1− γ
+ (1− π)

(c2,2)
1−γ

1− γ
(12)

subject to

(1− π)c2,2 = R [ψ − πc1,2]

and non-negativity constraints. Notice the similarity between this problem and (3). The strategy

profile in (11) implies that when a run occurs, it halts after π withdrawals have been made. From

that point onward, only impatient depositors withdraw in period 1 and, therefore, the BA is able

to implement the first-best continuation allocation, given the per-capita amount ψ of resources

remaining.

The solution to this problem is given by

bc1,2 = ψ
1

π + (1− π)A
and bc2,2 = ψ

RA

π + (1− π)A
(13)

where A is as defined in (5). Here we see that the first-best continuation allocation after π with-

drawals resembles the overall first-best allocation (4), but with the payments scaled by the available

resources per capita ψ. Let V denote the value of the objective in (12) evaluated at the solution,

that is

V (ψ) = π
(bc1,2)1−γ
1− γ

+ (1− π)
(bc2,2)1−γ
1− γ

,

or, using (13) and (5),

V (ψ) = (π + (1− π)A)γ
ψ1−γ

1− γ
.

We next ask how the BA will set the payments to the first π depositors who withdraw. The

BA does not know whether these payments will go to only impatient depositors, as will happen

if s > s1, or to a mix of patient and impatient depositors participating in a run, as will occur if

s ≤ s1. Regardless of which case applies, however, the BA will want to give the same payment to

all π depositors. Any payment schedule for which x (μ) is not constant for (almost) all μ ≤ π is

strictly dominated by another policy that makes the same total payment to these depositors (leaving

ψ unchanged), but divides the resources evenly among them.

Therefore, the BA will set x (μ) = c1 for μ ∈ [0, π] , where c1 is chosen to solve the following
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problem.

max
{c1,c2}

(1− s1)

Ã
π
(c1)

1−γ

1− γ
+ (1− π)

(c2)
1−γ

1− γ

!
+ s1

Ã
π
(c1)

1−γ

1− γ
+ (1− π)V (ψ)

!
(14)

subject to

(1− π)c2 = R (1− πc1) and

ψ =
1− πc1
1− π

.

The solution to this problem is

bc1 = 1

π + (1− π)A1
and bc2 = RA1

π + (1− π)A1
, (15)

where

A1 =
¡
(1− s1)R

1−γ + s1 [π + (1− π)A]γ
¢ 1
γ .

It is straightforward to show that RA1 > 1 holds, so that bc2 is larger than bc1. In other words, if a

run does not occur (that is, if s > s1), then depositors withdrawing in period 2 will receive more

than depositors withdrawing in period 1. Also, when s1 > 0 and, hence, a run is possible, it can

be shown that bc1,2 is smaller than bc1; that is, depositors who withdraw in period 1 after it becomes

clear that a (partial) run has taken place suffer a “discount” relative to depositors who were earlier

in line. Summarizing, the BA’s best response to the profile of withdrawal strategies (10) is given

by bx (μ) = ½ bc1bc1,2
¾

for μ ∈
½

[0, π]¡
π, 1− (1− π)2

¤ ¾ . (16)

We next ask if the strategy profile in (11) is an equilibrium of the depositors’ game generated

by bx. In other words, if the BA were to follow the payment scheme in (16), would each depositor

find it optimal to follow (11) if she believed others would do so? Impatient depositors will always

choose to withdraw in period 1, so we only need to consider the actions of patient depositors. In

states s > s1, a patient depositor receives bc2 if she waits until period 2 to withdraw, but receives bc1
if she deviates and withdraws early. Since bc2 > bc1 holds, waiting to withdraw is clearly the optimal

choice in these states.

In states s ≤ s1, the payment a patient depositor receives if she chooses to withdraw early

depends on her index n. For a patient depositor with n > π, the choice is between bc1,2 if she
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withdraws early and bc2,2 if she waits. Since RA > 1, it is optimal for her to wait, as specified by

(11). What about patient depositors with n ≤ π? Such a depositor will also receive bc22 if she waits

until period 2, but will receive the “pre-rescheduling” payment, bc1, if she withdraws early. She will

choose to follow (11) and withdraw early if bc1 > bc22; using (15) and (13), this inequality can be

shown to be equivalent to

f (γ, s1) ≡ R

⎛⎝(1− s1)
R1−γ³

π + (1− π)R
1−γ
γ

´γ + s1

⎞⎠ < 1. (17)

If this condition holds, the profile of withdrawal strategies (11) represents an equilibrium of the

depositors’ game generated by the policy bx. Since bx is, by construction, the BA’s best response to

(11), we have constructed an equilibrium of the (overall) banking game without commitment.

When will (17) hold? If the parameters R, γ, and π are such that

f(γ, 0) = R
R1−γ³

π + (1− π)R
1−γ
γ

´γ < 1, (18)

then, by continuity, (17) will hold if s1 is small enough. In other words, if condition (18) holds, we

can use the above construction to generate an equilibrium in which the first π depositors run with

positive probability. We have, therefore, proven the first of our results on the existence of a bank

run equilibrium.

Proposition 4 If (18) holds, there exists an equilibrium of the banking game without commitment
in which a fraction π of depositors run on the banking system with positive probability.

Notice that for any given values of R and π, condition (18) will hold if γ is large enough. In

other words, if depositors are sufficiently risk averse, the partial-run equilibrium described above

will exist.17

5.3 A run equilibrium with two waves

We showed in Section 5.1 that there cannot be an equilibrium in which all depositors run with

certainty because the BA, anticipating the run, will divide its resources in such a way that patient

17 Gu (2008) studies a model with demand-deposit contracts and generates a partial-bank-run equilibrium by having
depositors observe imperfectly correlated sunspot signals. In her setting, a partial run occurs in some states and
a full run in others. In our environment, in contrast, only partial runs are observed; a full run cannot occur in any state.
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depositors would rather wait to withdraw. Similarly, the partial-run equilibrium described above

cannot continue beyond the first π withdrawals with certainty, because the BA would again be able

to anticipate the continuing nature of the run and would choose (as part of the ex post optimal

policy) a payment schedule that actually convinces patient depositors to wait.

It is, however, possible for the run to continue with positive probability. In this subsection we

discuss one such equilibrium. This equilibrium has the property that, after the first π depositors

have withdrawn during a run, the run may either halt, as in the previous subsection, or the crisis

may “deepen” as a second wave of patient depositors withdraws early after the rescheduling of

payments. In the latter case, a fraction π of the remaining depositors will withdraw before the

BA is able to infer that the run has not stopped. At this point, the BA will choose to reschedule

payments again and (in the equilibrium we construct here) the run will halt. In the following

subsection, we state and prove a more general result that includes the equilibrium discussed here

as a special case.

Consider the following profile of withdrawal strategies:

for s ≥ s1 : yn (θn, s) = θn for all n

for s ∈ [s2, s1) : yn (θn, s) =

½
0
θn

¾
for
½

n ≤ π
n > π

¾

for s < s2 yn (θn, s) =

½
0
θn

¾
for
½

n ≤ 1− (1− π)2

n > 1− (1− π)2

¾ (19)

for some s1 > s2 > 0. In this profile, there are two sets of states associated with a run on the

banking system. For values of s in [s2, s1) , a fraction π of depositors will run, as in the previous

subsection. For s below s2, however, these depositors are joined by a fraction π of the remaining

depositors.

What is the BA’s best response to the strategy profile in (19)? Without going into the details of

the calculations, we can see that it must be of the form

bx (μ) =
⎧⎨⎩ c1

c1,2
c1,3

⎫⎬⎭ for

⎧⎨⎩
μ < π

μ ∈
¡
π, 1− (1− π)2

¤
μ > 1− (1− π)2

⎫⎬⎭ . (20)

The reasoning behind the form of (20) is exactly the same as that behind (16) in the previous

section. When the first π withdrawals are taking place, the BA is unsure whether these withdrawals
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are being made only by impatient depositors or a run is underway. It assigns probability s1 to the

latter case. Regardless of this probability, however, it will choose to offer a common payment c1 on

all of these withdrawals. This payment level can be found by solving a problem similar to (14), but

with the value function in the second term of the objective modified to reflect the richer structure

of the strategy profile (19) (see the proof of Proposition 5 in the appendix for details).

If more than π withdrawals take place in period 1, the BA will recognize that a run is underway

and will reschedule payments. At this point, however, the BA is unsure whether the run will halt,

with all additional period 1 withdrawals being made by impatient depositors, or if it will continue.

The run will halt if s ∈ [s2, s1) and will continue if s < s2; hence, the BA assigns (conditional)

probability s2/s1 to the event that the run continues. Based on this probability, the BA will choose

to give a common payment c1,2 to the next π (1− π) depositors who withdraw. Similarly, if more

than 1− (1− π)2 withdrawals take place in period 1, the BA will be able to infer that s < s2. In

this case it will solve a problem similar to (12) to find the optimal payment c1,3.

The remaining question is whether or not the withdrawal strategies (19) are an equilibrium of

the depositors’ game generated by the policy (20). Would each individual depositor be willing to

follow the strategy in (19) if she expected all others to do so? The answer will be affirmative if and

only if the payments induced by the policy (20) satisfy

c1 ≤ c2, c1,2 ≤ c2,2, and c1,3 ≤ c2,3, (21)

as well as

c1 ≥ c2,2, c1 ≥ c2,3, and c1,2 ≥ c2,3. (22)

The inequalities in (21) guarantee that if a run is not currently underway when a patient depositor

has the opportunity to withdraw (either because a run never started or because it has halted), she

will be willing to wait until period 2. The first inequality applies to states s ≥ s1, where each

depositor receives c1 if she withdraws in period 1 and c2 if she waits until period 2. The second

applies to states s ∈ [s2, s1) and depositors n > π; in this case a run has occurred but has halted and

these depositors will receive either c1,2 in period 1 or c2,2 in period 2. Similarly, the third inequality

applies to states s < s2 and depositors n > 1− (1− π)2 . It can be shown, by deriving expressions

similar to (13) and (15), that these inequalities always hold.

The inequalities in (22) guarantee that a patient depositor is willing to participate in the run if
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one is underway when she has the opportunity to withdraw. The first inequality guarantees that

depositors with n ≤ π are willing to run in states s ∈ [s2, s1) , while the second ensures that these

same depositors are willing to run in states s < s2. The third inequality guarantees that depositors

with n between π and 1 − (1− π)2 are willing to run in states s < s2. If all of these inequalities

hold, every depositor will choose to follow (19) if she expects all others to do so and, hence, that

strategy profile is an equilibrium of the depositors’ game.

Whether or not the inequalities in (22) hold will depend on the cutoff states s1 and s2, which

have a large impact on the payments that the BA chooses. It can be shown that there exist s1 >

s2 > 0 such that all of these inequalities hold if and only if condition (18) holds. In other words, the

condition on the parameters R, γ, and π that guarantees the existence of an equilibrium in which

a fraction π of depositors choose to run in some states also guarantees that there is an equilibrium

in which 1 − (1− π)2 choose to run in some states. Rather than presenting the details of these

calculations, we move directly to our main result, which includes the two-wave run equilibrium as

a special case.

5.4 Run equilibria with many waves

Nothing in the above discussion requires that a run must end with certainty after a second wave

of early withdrawals. In fact, the same type of reasoning can be used to construct an equilibrium

in which a run may occur in any finite number of waves and hence, for some states, the run can

involve a fraction of depositors that is very close to one (that is, almost all the depositors in the

system). The main proposition of the paper states this result.

Proposition 5 If (18) holds, then for any λ < 1 there exists an equilibrium of the banking game
without commitment in which the fraction of depositors withdrawing in period 1 is greater than λ
with positive probability.

The proof is presented in Appendix A. Given some λ < 1, the first step is to determine the

number of waves a run would have to go through in order to involve at least a fraction λ of the

depositors. An equilibrium with the required number of waves is then constructed following the

type of approach used in the previous subsection. After each wave, the BA is unsure if the run

will halt or continue and it reschedules payments in a way that reflects this uncertainty. These

rescheduled payments are then shown to satisfy the analog of the conditions in (22) and, hence,
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they permit the run to continue in some states.

An interesting feature of the run equilibrium identified in Proposition 5 is that, even if nearly all

depositors end up withdrawing in period 1, the BA remains “optimistic” throughout the period that

the run has already ended. As discussed above, if the BA ever believed that a full run was underway,

it would reschedule payments in such a way that the remaining depositors would choose not to run.

The only way a run can continue (or even get started) is if the BA is fairly optimistic and, therefore,

sets the payment on early withdrawals relatively high. This fact implies that bank runs must occur

in waves in our environment, with the run likely to end after each wave.

Peck and Shell (2003) study a model with aggregate uncertainty about the fraction of impatient

depositors and construct examples of equilibria in which all depositors run. In these equilibria,

the banking authority remains optimistic that it is observing an unusually large realization of the

fraction of impatient depositors rather than a run and, hence, believes that the withdrawals will

likely stop soon. In this sense, the aggregate uncertainty in their model plays the role of the wave

structure of equilibrium in ours.

The two approaches have fundamental differences, however. In their setting, the banking au-

thority can never know for certain whether or not a run has occurred, even after the fact. In the

examples they construct, the event in which all depositors are impatient is much more likely than

a run. We do not believe it is plausible to characterize events in the U.S. in the early 1930s or

in Argentina in 2001 as possibly resulting from a spike in the fundamental demand for liquidity.

Once underway, a run on the banking system is easily recognized. Our model has this property:

when more that pi withdrawals take place, the BA correctly infers that a run has taken place. Its

optimism is not about whether or not a run has occurred, but rather about whether or not the run

will continue after payments are rescheduled.

6 Discussion

6.1 The probability of a run

The results presented above show that there exist equilibria in which runs occur with positive

probability. How large can the equilibrium probability of a run be? This question is easiest to

answer for a single-wave run. For that case, we can solve (17) as an equality to find the cutoff
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probability s such that a run equilibrium exists for any s1 < s. Doing so yields

s =
1
R
−B

1−B
,

where

B =
R1−γ³

π + (1− π)R
1−γ
γ

´γ .
The value of B is strictly decreasing in γ and, hence, s is strictly increasing in γ. In other words,

when depositors are more risk averse, the maximum probability of a run is higher. Figure 1 plots

the area where s1 < s is satisfied.

Figure 1: The maximum probability of a run

In the limiting case where γ goes to infinity, s converges to R−1. While it is not clear what pa-

rameter values should be considered “realistic” in our stylized model, this calculation nevertheless

demonstrates that runs need not be rare events in this environment. If, for example, R = 1.1, then

when depositors are very risk averse there exists an equilibrium in which the probability of a run

is greater than 90%.

6.2 The degree of risk aversion

Figure 1 also shows that, for any given values of R and π, the single-wave run equilibrium exists

for some values of s1 when γ is large enough. In other words, bank runs can occur in equilibrium
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whenever depositors are sufficiently risk averse. In fact, this statement applies to the many-wave

run equilibrium constructed in Proposition 5 as well, since both single- and many-wave run equi-

libria exist if and only if (18) holds. We state this result as a corollary.

Corollary 3 Given R and π, if depositors are sufficiently risk averse, bank runs can occur with
positive probability in an equilibrium without commitment.

How risk averse must depositors be? Condition (18) holds for some values of R and π if and

only if γ > 2. In other words, the curve in Figure 1 always begins to the right of γ = 2, and there

are values of R and π for which it begins arbitrarily close to γ = 2. Even this requirement can

be weakened, however, through a relatively straightforward modification of the model. Cooper

and Ross (1998) studied a two-technology specification of the Diamond-Dybvig model with costly

liquidation (see also Ennis and Keister 2006). While they ruled out suspensions of convertibility

and payment reschedulings by assumption, they showed how having two technologies and a non-

trivial portfolio choice weakens the requirement on risk aversion needed for the run equilibrium to

exist. The same is true in our model.

Suppose that, in period 0, the BA had to divide its resources between a liquid investment, which

yields a return of 1 in either period 1 or 2, and an illiquid investment that yields R in period 2 but

only 1 − τ in period 1, where τ ≥ 0 represents a liquidation cost. When τ = 0, the liquid asset

will not be used and the model reduces to the one studied here. It can be shown that increasing

the liquidation cost shifts the boundary in Figure 1 upward, increasing the set of run probabilities

consistent with equilibrium for any given γ. Furthermore, as the liquidation cost becomes large,

the starting point of the boundary approaches the origin of the diagram. In other words, for any

level of risk aversion γ > 1, there exists a level of the liquidation cost that permits a run to occur

with positive probability.

6.3 The fraction of impatient depositors

An examination of (18) shows that it cannot hold when there are very few impatient depositors. In

the extreme case where π is set to zero, the value of f (γ, 0) is R > 1 and the condition is clearly

violated. By continuity, it is also violated for values of π close to zero. Using the fact that f is

strictly decreasing in π delivers the following result.
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Corollary 4 Given R and γ, there exists π ∈ (0, 1] such that bank runs can occur with positive
probability in an equilibrium without commitment if and only if π > π.

Intuitively, when π is small the BA will discover whether or not a run is underway fairly quickly.

This allows it to reschedule payments before it has given away many resources during a run. The

BA will also discover quickly if the run has halted or if it continues following each wave. Because

the BA is able to make inferences frequently and adjust payments accordingly, it will be able to

retain a relatively large amount of resources for making payments in period 2. A depositor who

sits out the run will then receive a relatively large payment and, as a result, running will not be

equilibrium behavior. Viewed this way, Corollary 4 says that the rate at which the BA is able to

infer the sunspot state must be sufficiently slow for the possibility of bank runs to arise.

6.4 Depositors’ information sets

Following Green and Lin (2000, 2003), we have assumed that depositors know the order in which

they would arrive at the bank if they chose to withdraw early. This approach differs from the

original Diamond-Dybvig model and most of the subsequent literature, where a depositor first

chooses whether or not to withdraw and then is assigned a place in line. The known-ordering

approach simplifies our analysis above because, together with the law of large numbers, it implies

that each depositor knows precisely how much she will receive if she withdraws early; in other

models this payoff is random. Our results, however, do not depend critically on depositors knowing

the order. In particular, the type of run equilibria we construct can also be shown to exist in an

environment that is closer to the original Diamond-Dybvig model. In this subsection, we briefly

describe how this works.

Consider an environment where withdrawal decisions are initially made without any informa-

tion about the ordering. Depositors who choose to withdraw are randomly assigned places in line.

Suppose, however, that when a rescheduling of payments is announced, depositors who are in line

but have not yet been served are able to re-evaluate their decision to withdraw. This is the key

feature of the alternative environment: a depositor may not know how much she will receive if she

withdraws early, but if the amount is less than the “standard” payment then she is able to change

her mind. In this way, she can effectively discern the withdrawal payment she would receive before

making a final decision.

It is fairly straightforward to construct a run equilibrium with a single wave in this modified
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environment. The BA follows the policy in (16). All depositors initially attempt to withdraw.

After a proportion π of agents withdraw, the banking authority discovers that a run is underway

and reschedules payments. In response, the remaining patient depositors in line reevaluate their

decision and decide to wait until period 2. This behavior represents an equilibrium under exactly

the same conditions as in our analysis above. In particular, if (18) holds, then the initial run can

occur with positive probability in equilibrium.

Run equilibria with many waves can be constructed in this alternative environment in a similar

fashion. To decide the specifics of the payment schedule, the banking authority needs to form

expectations over the possible reaction of depositors. In formalizing this process it is convenient

to introduce explicit coordination devices. In particular, suppose that after each partial suspension

is announced, the remaining depositors in line can condition their actions on the realization of a

new sunspot variable. The run could then halt in some states, but in others it could continue until

the next phase of the suspension plan is announced. At that point, yet another sunspot variable is

realized and the process can repeat any number of times.

Decision making in this alternative environment has a more dynamic nature, with actions being

decided in stages rather than all at once. While this property is perhaps appealing on intuitive

grounds, it also raises the usual complications associated with dynamic games, including the need

to specify agents’ beliefs along off-equilibrium paths of play. In addition, the idea that depositors

can change their decisions based on the payments offered by the BA is somewhat at odds with

the isolation assumption. One rather appealing aspect of our formulation is that it captures the

important features of the “dynamic” story without introducing unnecessary complications.

The fact that our results do not depend on whether or not depositors have information about their

position in the withdrawal order stands in stark contrast with the previous literature. Green and Lin

(2003) have shown how giving depositors this type of information can, in some circumstances,

eliminate the type of run equilibrium studied by Peck and Shell (2003).18 The discussion here

shows that our results are independent of such informational details, which is another appealing

aspect of our model.

18 See also Andolfatto et al. (2007) and Ennis and Keister (2009b).
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7 Concluding Remarks

The issues of commitment, credibility, and time-inconsistency are pervasive in economics and

have been studied extensively. In banking theory, however, the importance of these issues has

received relatively little attention, apart from often informal treatments of bank bailouts.19 In this

paper, we analyze the role of commitment in banking policies designed to respond to the possibil-

ity of a run on the banking sector. We study a setting in which bank runs would never occur under

commitment because, in that case, the threat to suspend payments in response to a run convinces

depositors not to run in the first place. In contrast, equilibrium bank runs can occur in this same

setting when policy makers cannot commit to future actions. These run equilibria take an interest-

ing, and perhaps realistic, form. In particular, the total size of a run in these equilibria is stochastic;

after each wave of withdrawals, the run may halt or it may deepen as more depositors withdraw.

A large number of papers have addressed applied questions related to bank runs and financial

crises using versions of the Diamond-Dybvig model.20 In order to obtain a run equilibrium in a

tractable way, these papers place ad hoc restrictions on the banking contract, such as not allow-

ing payments to be suspended until banks’ assets are totally depleted. This approach has obvious

drawbacks, including the fact that the results of such an exercise may depend critically on what

restrictions are imposed. The model presented here offers an alternative. There are no restrictions

on contracts other than those imposed by the physical environment, and yet the model is highly

tractable. Bank run equilibria are readily constructed and have interesting dynamic features. More-

over, studying environments without commitment seems natural when considering bank runs and

other types of crises. For these reasons, we believe our model will prove useful for studying a wide

range of issues related to banking and financial instability.

Instead of placing ad hoc restrictions on contracts, some papers have studied models with ag-

gregate uncertainty about fundamental withdrawal demand. Suspending payments is less attractive

in such settings because the banking authority does not know the proper point at which to suspend.

We consider an environment without aggregate uncertainty in order to keep our model analytically

tractable, but it is not essential for our results. Changing the model so that the fraction of depositors

who are impatient is random will complicate matters, but our insights will remain valid as long as
19 Two notable exceptions are Mailath and Mester (1994) and Acharya and Yorulmazer (2007), both of which deal
with credibility issues in policies regarding bank closure.
20 See, for example, Temzelides (1997), Cooper and Ross (1998), Allen and Gale (2000) and Chang and Velasco
(2001), to name only a few.
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the support of the distribution is not too large. What is important for our analysis is that there is an

upper bound on the level of normal withdrawal demand, and that suspending payments to deposi-

tors once this bound is reached would rule out the possibility of a self-fulfilling bank run. In any

such setting, the credibility of the threat to suspend comes into question and the issues highlighted

in this paper are relevant.

The willingness of a banking authority to suspend payments in reality is likely to depend on

how long the banking system needs to remain closed. In the model, the time lapse between periods

1 and 2 corresponds to the maturity time of banks’ investments. More generally, it can be thought

of as the time necessary for banks to liquidate their portfolios without incurring significant losses.

If this period is fairly short, the fraction of depositors who need “early” access to their funds

may be rather small, which would correspond to a low value of π in the model. Our result in

Corollary 4 shows that if π is low enough, the banking authority can uniquely implement the first-

best allocation. In other words, if only a short suspension of payments is required, an inability to

commit to a policy is less likely to cause problems. The longer the time period involved, however,

the greater is the need for additional early payments and, hence, the more the banking authority

will deviate from the commitment solution.

This reasoning suggests that a decrease in the liquidity of the assets held by banks, as has been

observed during the recent market turmoil, might increase banks’ susceptibility to a run. Similarly,

it suggests that a banking system that is perceived to have fundamental weaknesses – in particular,

some uncertainty about asset values that will take time to resolve – should be more susceptible to

a run than a system that is fundamentally sound. It was clear to observers that the banking crisis in

Argentina in 2001, for example, was not likely to be sorted out quickly, which undoubtedly made

a strict suspension of payments more difficult and may have contributed ex ante to individuals’

decisions to run. Formalizing this argument would require a more fully dynamic model and seems

a promising avenue for future research.

Studying suspension policies in a longer-horizon setting would introduce other interesting is-

sues. It is well known, for example, that reputational concerns can substitute for commitment in

some settings (see Stokey 1991 and Chari and Kehoe 1990). The extent to which the desire to

build a reputation for being “tough” in the face of a run would enable the banking authority to

credibly suspend payments (and thereby rule out runs) is an interesting question. The answer will

likely depend on how, if ever, the reputation is tested given that bank runs potentially lie off the
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equilibrium path. While these difficult issues are beyond the scope of the present paper, we believe

that our analysis provides a critical first step by highlighting their relevance. Once it is recognized

that suspension of convertibility policies may not be time consistent even in simple settings, issues

of both static and dynamic credibility become important. Our analysis using the classic model of

Diamond and Dybvig should serve as a useful benchmark for future work on the issue.
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Appendix A. Proof of Proposition 5

Proposition 5: If (18) holds, then for any λ < 1 there exists an equilibrium of the banking game

without commitment in which the fraction of depositors withdrawing in period 1 is greater than λ

with positive probability.

The proof is constructive. Let K be the smallest integer such that

1− (1− π)K+1 > λ

holds. Consider the strategy profile

for s ≥ s1 : yn (θn, s) = θn for all n

for s ∈ [sk+1, sk) : yn (θn, s) =

½
0
θn

¾
for n

½
≤
>

¾
1− (1− π)k

(23)

for k = 1, . . .K, where

1 > s1 > . . . > sK > sK+1 ≡ 0.

Under this strategy profile, the fraction of depositors withdrawing in period 1 is 1−(1− π)K+1 with

probability sK > 0. Therefore, if we can show that (23) is part of an equilibrium of the banking

game without commitment, the proposition will be proved. We break this task into two steps,

which are addressed in separate lemmas below. First, Lemma 1 derives the BA’s best response to

this strategy profile, which we denote bx. Lemma 2 then shows that when (18) holds, we can choose

the numbers sk such that (23) is an equilibrium of the depositors’ game generated by bx. The result

in the proposition follows immediately from these two lemmas.

Lemma 1 The BA’s best response to (23) is

bx (μ) = Ã kY
j=1

Aj

π + (1− π)Aj

!
1

Ak
for μ ∈

³
1− (1− π)k−1 , 1− (1− π)k

i
,

where

Ak =
¡
(1− qk)R

1−γ + qk (π + (1− π)Ak+1)
γ¢ 1γ , for k = 1, . . . ,K + 1. (24)

Proof: We work backwards. Define ψK to be the per-capita resources remaining after 1−(1− π)K
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withdrawals have been made, that is,

ψK =
1−

R 1−(1−π)K
0

x (μ) dμ

(1− π)K
.

We first derive the payments x (μ) for μ ∈
³
1− (1− π)K , 1− (1− π)K+1

i
.21 The BA recognizes

that under (23) these payments will only be made in states s < sK and that all of these payments,

in the event they are made, will go to impatient depositors. The remaining patient depositors will

wait until period 2 to withdraw. Because depositors are risk averse, the BA will choose to give the

same amount to all impatient depositors; we denote this amount c1,K+1, where the latter part of the

subscript indicates that these payments would apply after there have been K waves of withdrawals

and the run has halted. Let c2,K+1 denote the payment that the remaining patient depositors will

receive in period 2. These payment amounts will be chosen to solve

max
c1,K+1,c2,K+1

π
(c1,K+1)

1−γ

1− γ
+ (1− π)

(c2,K+1)
1−γ

1− γ
(25)

subject to

(1− π)c2,K+1 = R [ψK − πc1,K+1]

and non-negativity constraints. Notice that this problem resembles that for finding the first-best

allocation, but with per-capita resources set to ψK instead of 1. The solution is

bc1,K+1 = ψK

1

π + (1− π)AK+1
and bc2,K+1 = ψK

RAK+1

π + (1− π)AK+1
, (26)

where

AK+1 ≡ R
1−γ
γ < 1. (27)

Let VK+1 denote the value of the objective in (25) evaluated at the solution, that is

VK+1 (ψK) = π
(bc1,K+1)1−γ
1− γ

+ (1− π)
(bc2,K+1)1−γ
1− γ

,

or, substituting in (26),

VK+1 (ψK) = (π + (1− π)AK+1)
γ (ψK)

1−γ

1− γ
.

21 Under (23), there are no circumstances in which the payments associated with μ ≥ 1 − (1− π)K+1 will be
made. The best-response levels for these payments are, therefore, indeterminate and do not matter for our analysis.
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Next, we consider the payments in the interval

μ ∈
³
1− (1− π)k−1 , 1− (1− π)k

i
for any k ∈ {1, . . . ,K} .

These payments will be made in states s ≤ sk−1. Unlike in the previous case, the BA is not sure

if these payments will go only to impatient depositors, as will occur if s ∈ [sk, sk−1) , or to a mix

of patient and impatient depositors during a continued run, as will occur if s < sk. Regardless of

which case applies, however, the BA will want to give the same payment to all depositors who

withdraw in this interval. In other words, any payment schedule for which x (μ) is not constant

for (almost) all μ in this interval is strictly dominated by another policy that makes the same total

payments to these depositors, but divides the resources evenly among them. Let c1,k denote the

payment given to depositors withdrawing in this interval in period 1. Let c2,k denote the payment

that will be received by patient depositors in period 2 if there are no further withdrawals in period

1, that is, if s ∈ [sk, sk−1) .
Before we write the optimization problem for choosing these payment levels, we introduce

some notation to simplify the statement of the problem. First, define ψk−1 to be the amount of

resources per capita that remain after 1− (1− π)k−1 withdrawals in period 1, that is,

ψk−1 =
1−

R 1−(1−π)k−1
0

x (μ) dμ

(1− π)k−1
for k = 1, . . . ,K.

Straightforward calculations then yield the following relationship betweenψk−1, the payments c1,k,

and the per-capita resources ψk remaining after these payments are made,

ψk =
ψk−1 − πc1,k
1− π

. (28)

Next, define

qk =
sk
sk−1

= Prob [s < sk | s < sk−1] for k = 1, . . . ,K,

with s0 ≡ 1. In other words, qk is the probability that the run will continue into the kth wave, given

that it has lasted for k − 1 waves. Finally, let Vk
¡
ψk−1

¢
denote the average expected utility of

depositors with n > 1 − (1− π)k−1 conditional on s < sk−1. In other words, Vk measures the

expected utility of depositors who have not yet been served when the BA discovers that the run has
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at least k − 1 waves. Then the BA will choose the payment c1,k to solve

max
c1,k,c2,k

(1− qk)

Ã
π
(c1,k)

1−γ

1− γ
+ (1− π)

(c2,k)
1−γ

1− γ

!
+ qk

Ã
π
(c1,k)

1−γ

1− γ
+ (1− π)Vk+1 (ψk)

!

subject to
(1− π)c2,k = R

£
ψk−1 − πc1,k

¤
,

(28), and non-negativity constraints. The first term in the objective function represents utility in the

event that the run halts after k−1waves. In this case, the remaining impatient depositors all receive

c1,k and the remaining patient depositors receive c2,k in period 2. The second term represents utility

in the event that the run continues into the kth wave, which occurs with probability qk. In this case,

the first π depositors to withdraw (a mix of impatient and patient depositors) will receive c1,k. The

remaining depositors will receive payments after the next phase of the suspension takes effect; the

utility of these depositors is captured by the value function Vk+1.

Solving this problem recursively backward, substituting the value function for each value of k

into the problem for k − 1 yields

bc1,k = ψk−1
1

π+(1−π)Ak
, bc2,k = ψk−1

RAk
π+(1−π)Ak , and

Vk
¡
ψk−1

¢
= (π + (1− π)Ak)

γ (ψk−1)
1−γ

1−γ ,

where Ak is given in (24). We can then replace the ψk terms as follows. Since ψ0 = 1 (by

definition), we have bc1,1 = 1

π + (1− π)A1
.

Then we can calculate the amount of resources remaining after the first π withdrawals

ψ1 =
1− πbc1,1
1− π

=
A1

π + (1− π)A1
,

and use this amount to find the optimal payment levels following the first partial suspension

bc1,2 = A1
π + (1− π)A1

1

π + (1− π)A2
and bc2,2 = A1

π + (1− π)A1

A2
π + (1− π)A2

R.

Continuing this process forward yields

ψk =
kY

j=1

Aj

π + (1− π)Aj
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and

bc1,k = Ã kY
j=1

Aj

π + (1− π)Aj

!
1

Ak
and bc2,k = Ã kY

j=1

Aj

π + (1− π)Aj

!
R, (29)

which establishes the Lemma. ¥

Lemma 2 If (18) holds, there exist 1 > s1 > . . . sK > 0 such that (23) is an equilibrium of the
depositors’ game generated by bx.
Proof: Since impatient depositors will always choose to withdraw early, we only need to check the

optimal behavior of a depositor when she is patient. The strategies in (23) are individually optimal

if
(a) bc1,j ≥ bc2,k for j = 1, . . . k − 1
(b) bc1,k ≤ bc2,k

¾
for k = 1, . . . ,K + 1.

The inequalities on line (a) imply that patient depositors are willing to participate in the run. If

the run lasts for k − 1 waves, then a patient depositor who chooses not to run will receive bc2,k. A

patient depositor who withdraws early receives bc1,j for some j < k that depends on her index n.

If each of these inequalities hold, then all patient depositors who have an opportunity to withdraw

during the run will choose to do so. The inequalities on line (b) are often referred to as the incentive

compatibility constraint. They imply that if a run is not underway, or has halted before a depositor

is served, then a patient depositor will be willing to wait and withdraw in period 2.

We examine line (b) first. From (27) we have RAK+1 = R
1
γ > 1. Then, using (24), we have

RAk = ((1− qk)R+ qk (πR+ (1− π)RAk+1)
γ)

1
γ , for k = 1, . . . ,K.

Applied recursively from k = K down to k = 1, this expression demonstrates that

RAk > 1 for k = 1, . . . ,K + 1.

It then follows immediately from (29) that (b) holds.

Next, we examine line (a) . First, from (29) we have

bc1,j+1 = Aj

π + (1− π)Aj+1
bc1,j. (30)
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It is straightforward to show that

Aj

π + (1− π)Aj+1
< 1 for j = 1, . . . ,K.

Equation (30) therefore shows that in each wave of the partial suspension, the payment received

by depositors is smaller than in the previous wave, an intuitive result. More importantly, this result

also implies that instead of checking the k− 1 inequalities on line (a) for each value of k, we only

need to check the last one:

bc1,k−1 ≥ bc2,k for k = 2, . . . ,K + 1.

This inequality can be written as

bc1,k−1 = Ãk−1Y
j=1

Aj

π + (1− π)Aj

!
1

Ak−1
≥
Ã

kY
j=1

Aj

π + (1− π)Aj

!
R = bc2,k,

which can be reduced to

(AkR)
γ

µ
(1− qk−1)

R1−γ

(π + (1− π)Ak)
γ + qk−1

¶
< 1 for k = 2, . . . ,K + 1. (31)

By replacing the Ak terms recursively, using (24), we have K inequalities involving only the

parameters R, γ, π, and the (endogenous) probabilities q1, . . . , qK . The question is under what

conditions these probabilities can be chosen so that all K inequalities hold.

Suppose we set qk = 0 for all k. Then Ak = R
1−γ
γ for all k and (31) reduces to the same

inequality for all values of k :

R
1
γ

R
1−γ
γ

π + (1− π)R
1−γ
γ

< 1,

which is exactly condition (18). Since the inequalities (31) are clearly continuous in the variables

qk, we therefore know that when (18) holds, there exists a number q > 0 such that (31) holds for

all k if we set qk = q for all k. We can then back out the cutoff states s1, . . . , sK by

s1 = q

sk = qsk−1 = qk for k = 2, . . . ,K.

Since sK > 0 holds, we have established the lemma. ¥
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