Summer 2016: Final A
Name
Note: Problems 4 and 5 are on the second page.
Short Answer (15 points each)

1. Assume a stock will pay dividends that grow at 25% per year for four years and then at 4% per year forever. Just after you estimate that the stock is worth $\$ 50$ per share, you realize that you used the wrong equity cost of capital. When you correct your error, you find that the actual price of the stock is less than $\$ 50$. In what direction did you change the equity cost of capital when you corrected your error?
2. When calculating the NNTAF and Free Cash Flow of a project, you mistakenly used depreciation of $\$ 400$ per year instead of the actual $\$ 200$ per year. When you correct your mistake, in what direction will your

UNI \uparrow, FF \downarrow
3. Why should it be difficult to find stocks with non-zero alphas?
$+2 /+2 /+1$ Driven to zero as investors's bus positive alpha + sell negate alpha stoves
4. How do the alphas and betas of growth stocks compare to those of value stocks?
$+8 /+7$
$+2 /+7 /+1$

Sell additional shares at the IPO price then repucinase the shares in the market after the price falls

Problems (75 points each)
Note: Unless I specifically state "calculations required", you only need to set up all solutions. Setting up a solution means you write down the relevant equations and plug in the appropriate numbers. If in any step you are solving for something other than the left-hand side of the equation, be sure to state what you are solving for. If you are using the result of an unsolved equation in a later step, make that clear. One way to do this is to call the result of an earlier step "A" or "B", etc. If you prefer, you can solve everything.

1. No Man's Sky (NMS) currently trades for $\$ 580$ per share and the market trades for $\$ 500$ per share. If a year from today the economy is weak, NMS will pay $\$ 500$ and the market will pay $\$ 400$. If a year from today the economy is strong, NMS will pay $\$ 750$ and the market will pay $\$ 650$. The risk-free interest rate equals 5%. What set of trades today will generate an arbitrage profit today? What arbitrage profit will you earn today? What cash flows will each trade you make today create a year from today if the economy is strong and if it is weak? What transactions will be required a year from today if the economy is strong to close out your positions? Hour answer should be a table similar to the ones in the notes and answer keys. Note: Cal culations respired

Equivalent to NMS: boy market; boy r: Sk- free that pays $\$ 100$ in one year

$$
\begin{aligned}
& \text { No arbitrage price for NMS: } 500+\frac{100}{1.05}=595.238 \Rightarrow \text { buy NMS } \\
& \text { Trans } \\
& \text { th Buy NMS } \\
& t \rightarrow \text { Short market } \\
& +\frac{\text { short cisk-flee }}{\text { Total }} \\
& \begin{array}{r}
144 \\
-580
\end{array} \\
& +500^{+4} \\
& \begin{array}{ll}
\begin{array}{ll}
+95.238 \\
+15.238 \times 4 &
\end{array} & \frac{-100+4}{\varnothing+4}
\end{array} \\
& \text { CF } \\
& \frac{\text { Trans }}{\text { Sell NMS }}+4 \\
& \text { Buy to cover the } M_{K+}+4 \\
& \text { Buy to cover sisk-free }
\end{aligned}
$$

2. Warp Shot bonds mature 8 years and 2 months from today for $\$ 1000$. The annual coupon rate on the bonds equals 7%, but coupons are paid semiannually. Set up the calculations needed to solve for the yield to maturity on the bond if the clean price of the bond equals $\$ 1063.71$

$$
\begin{aligned}
& D P=\begin{array}{c}
+4 \\
1063.71+\left(\frac{4}{6}\right) \mathrm{CPN}
\end{array} \\
& \text { lPN }=\begin{array}{c}
+4 \times 1+4 \\
.0200
\end{array} \\
& D P=(\overbrace{\left(\frac{C P N}{y}\right)}^{\left(1-\left(\frac{1}{1+y}\right)^{16}\right)}+\overbrace{(1000}^{\left.(1+y)^{17}+6\right)}+\overbrace{(1+y)^{4 / 6}+6}^{+8} \Rightarrow \text { solve for } y+5
\end{aligned}
$$

$$
4+m=5 x^{2}+6
$$

3. Congruent Corp. has just realized earnings of $\$ 3$ per share. The firm has just paid out 35% of its earnings and has reinvested 65% of its earnings in projects earning a 25% rate of return. Congruent expects to continue reinvesting 65% of its earnings in projects earning a 25% rate of return through eight years from today. Nine years from today, Congruent expects the return on new projects to fall to 3%. At that point, the firm will begin to pay out 80% of its earnings as dividends. If Congruent's equity cost of capital equals 9%, set up the calculations needed to determine the price per share of Congruent's stock.

$$
\begin{aligned}
& g_{1}=.65 \times .25+3 \\
& g_{2}=.2 \times .03+3
\end{aligned}
$$

$$
E_{1}=3\left(1+g_{1}\right)+3
$$

$$
D_{1}=E_{1} \times 35+3
$$

$$
E_{g}=\frac{+6}{3\left(1+5_{1}\right)^{9+6}}
$$

$$
\begin{aligned}
& D_{q}=8(E g)+3
\end{aligned}
$$

4. Your boss at Infrastructure-R-Us Inc. (IRU) has asked you to calculate the firm's weighted average cost of capital so that he can calculate the net present value of several projects the firm is considering undertaking. After doing a little research, you find that IRU has 2,000,000 shares outstanding, that the stock trades for $\$ 35$ per share, and that the stock has a beta of 1.3. You also find that IRU has $\$ 50,000,000$ of outstanding bonds and that the yield to maturity on these bonds equals 11%. In a report by Goldman Sachs, you find that IRU's debt has a B rating and that the expected loss per dollar of debt if the firm defaults is 65%. Looking at IRU's financial statements, you find that IRU's marginal tax rate equals 35%. And you find that the risk-free rate varies by maturity as follows: 1 -year $=0.6 \%, 2$ year $=0.7 \% ; 3$-year $=0.9 \% ; 5-$ year $=1.2 \% ; 7-$ year $=1.4 \% ; 10-$ year $=1.6 \%, 20-$ year $=1.9 \%, 30$-year $=$ 2.3%. Set up the calculations needed to calculate IRU's weighted average cost of capital if you expect the stock market to earn 9% per year.

$$
\begin{aligned}
& E=2,000,000 \times 35+6 \\
& D=50,000,000+4 \\
& +9\left(r_{E}=.016+1.3(.09-.016)\right. \\
& +9\left(r_{D}=.11-.055(.65)\right. \\
& +9\left(r_{\text {WAAC }}=\left(\frac{E}{E+1}\right) r_{E}+\left(\frac{D}{E+1)}\right) r_{D}(1-.35)\right.
\end{aligned}
$$

5. Olympian Fever Inc. is considering investing $\$ 37.5$ million today in a new retail store. The new store will fall into the 15 -year MACRS class and will be built on land Olympian acquired a year ago for $\$ 3$ million. This land could be sold today for $\$ 4$ million after taxes. Olympian expects revenues a year from today to equal $\$ 500$ million. In the following years, sales are expected to grow by 2% per year. Olympian Fever Inc. estimates that variable costs be the same as at existing stores and thus will equal 75% of revenues that and fixed costs associated with the store will equal $\$ 87.5$ million per year. The $\$ 100$ million per year spend operating Olympian's corporate headquarters will not change as a result of the new store, but 10% of this cost will be allocated to the new store. Net working capital (in millions) associated with the store will be as follows:

Year	0	1	2	3	4	5	
Cash	0.00	30.00	31.31	32.95	32.88	35.30	
	AR	0.00	16.25	16.24	17.56	18.52	18.35
	Inv	0.00	63.75	66.45	69.20	72.40	73.49
	AP	0.00	62.50	62.95	63.14	67.25	72.73

Set up the calculations needed to determine the new store's unlevered net income and free cash flow today and four years from today if Olympian's marginal tax rate equals 35%.

$$
U N I_{0}=0
$$

$$
F C_{\overline{r_{0}}}=0+0-(37.5+4)-0
$$

$$
U N I_{4}=\left(R_{4}-E_{4}-D_{4}\right)(1-.35)+10
$$

$$
R_{4}=500(1.02)^{3}+11
$$

$$
E_{4}=.25\left(R_{4}\right)+87.5+10
$$

$$
\left.D_{4}=37.5(.0) 70\right)+11
$$

$$
F C F_{4}=U N I_{4}+D_{4}-0-\Delta N W C_{4}+10
$$

$$
D N W C_{4}=56.55-56.57+12
$$

