Problems (75 points each)
Note: Unless I specifically state "Calculations required", you can just set up all problems. If you are using the result of an unsolved equation in a later step, just make that clear. One way to do this, set up the equation and call your result "A" or "B", etc. If in any step you are solving for something other than the left-hand side of the equation, indicate which variable you are solving for. If you prefer, you can solve everything (but this will take longer).

1. Dell Storage trades for $\$ 690$ and will pay off either $\$ 600$ or $\$ 900$ one year from today depending on whether the economy is weak or strong. The market index fund trades for $\$ 500$ and will pay off either $\$ 400$ or $\$ 700$ one year from today depending on whether the economy is weak or strong. The risk-free interest rate equals 4%. Set up a table that shows net cash flows will always equal \$0 next year and which answers the following questions. Note: Use "+" for inflows and "-" for outflows. Calculations required.
a. What set of transaction today generates an arbitrage profit?
b. What arbitrage profit do these transactions create?
e. Assume the economy is strong a year from today. What transactions are required to unwind your arbitrage trades?

Equivalent to Dell

Buy Market Buy Treasuries Total
 $\frac{200}{600}$

$\frac{200}{900}$
Price of Treasuries $=\frac{200}{1.04}=192.3077$
Cost of portfol: $0=500+192.3077=692.3077$
CF 1

Transact $(t=0)$
ti Buy Dell th short mkt $+500+5$
ta Short Treasiry

Total

2. You have just deposited $\$ 1000$ into an account earning an APR of 3% with quarterly compounding. You plan to begin semiannual withdrawals from this account beginning 10 months from today. Your final withdrawal would occur 3 years and 4 months from today. Your first withdrawal will equal $\$ 150$ and subsequent withdrawals will all grow or shrink by the same percent. Set up the calculations needed to determine the rate at which you can increase or shrink each withdrawal,

$$
\left.x \| 11 \frac{1}{4}\right)=\frac{.03}{4}
$$

$$
x \backslash r\left(\frac{1}{2}\right)=\left(1+r\left(\frac{1}{4}\right)\right)^{2}-1
$$

3. A bond that matures four years and two months from today for $\$ 1000$ has a coupon rate of 7%. Coupons are paid semiannually. Set up the calculations needed to determine the clean price of the bond if its yield to maturity

$$
U_{0}=U_{-4 m}\left(1+r\left(\frac{1}{2}\right)\right)^{4 / 6}+16
$$

$$
r\left(\frac{1}{2}\right)=\frac{.09}{2}+8
$$

$$
\text { Clean }=V_{0}-35\left(\frac{4}{6}\right)+11
$$

$$
\text { coupon }=\frac{.07 \times 1000}{2}=35 \times 8
$$

4. Slamburger is considering investing $\$ 12.5$ million today in a new retail store. The new store will fall into the 15year MACRS class and will be built on land Slamburger acquired a year ago for $\$ 1$ million. This land could be sold today for an after-tax cash flow of $\$ 1.2$ million. Slamburger expects revenues a year from today to equal $\$ 200$ million. In the following years, sales are expected to grow by 3\% per year. Slamburger estimates that associated w/ variable costs be the same as at existing stores and thus will equal 77.5% of revenues that and fixed costs will equal $\$ 35$ million per year. The $\$ 50$ million per year spend operating Slamburger's corporate headquarters will not change as a result of the new store, but 5% of this cost will be allocated to the new store. Net working not change as a result of the new store, but 5% of this cost will be
capital (in millions) associated with the store will be as follows:

Year	0	1	2	3	4	5	
Cash	0.00	12.00	12.91	13.94	14.62	14.51	
$\boldsymbol{+}$	AR	0.00	6.50	6.88	7.04	7.48	7.95
Inv	0.00	25.50	27.55	29.57	31.33	31.22	
	AP	0.00	25.00	26.59	27.19	28.58	28.32

Set up the calculations needed to determine the new store's unlevered net income and free cash flow Maynard four years from todayif Slamburger's marginal tax rate equals 3580.

$$
\begin{aligned}
& U N I_{4}=\left(R_{4}-E_{4}-\lambda_{4}\right)(1-.35)+14 \\
& R_{4}=200(1.03)^{3}+11 \\
& E_{4}=.705 R_{4}+35+11 \\
& D_{4}=12.5(.0770)+11 \\
& F C_{4}=U N I_{4}+\lambda_{4}-C E_{4}-\Delta N W C_{4}+14 \\
& \triangle N W C_{4}=24.85-23.36+11 \\
& C E_{4}=0+3
\end{aligned}
$$

5. Orchid Pharmaceuticals expects earnings of $\$ 200$ million a year from today. It expects to pay out 25% of its earnings as dividends and expects to pay out 10% of its earnings through repurchases of common stock. Orchid
 Orchid Pharmaceuticals currently has 100 million outstanding shares. What is the value of Orchid Pharmaceuticals stock if its equity cost of capital equals 9% ?

$$
c_{5}=c_{1}(1.15)^{4}+8
$$

$$
\begin{aligned}
& P_{0}=\frac{A}{100}+8 \\
& C_{1}=(.25+.1)(200)+8
\end{aligned}
$$

