Notes: In solving the following I recommend setting up a table like we did in chapter 3, but this is not required. I also recommend that you think a little about the following information rather than starting by doing a bunch of calculations. All answers should be on a per-share basis. Use a "+" for an inflow and a "-" for an outflow. I will assume an inflow if no sign is given.

Based on the following information on Yahoo! stock and options, 1) what set of transactions today will generate an arbitrage profit today, 2) what is your arbitrage profit today, 3) at expiration of the options, what are the cash flows on your individual positions and on your total portfolio if Yahoo!’s stock price a) rises to $30 per share and b) falls to $20 per share?

Strike price on options = $23; Expiration of options: 6/21/13 (88 days); Risk-free interest rate = 1.1%

<table>
<thead>
<tr>
<th>Bid</th>
<th>Ask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock</td>
<td>23.25</td>
</tr>
<tr>
<td>Call</td>
<td>1.37</td>
</tr>
<tr>
<td>Put</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Wall Street Journal Questions are on the back of this page.

Note: Call is in-the-money, but put is out-of-the-money

\[S + P = C + (P - L) \]

\[
\text{sell} \quad \text{buy} \quad +2 \quad -2
\]

\[P - L = \frac{23}{(1.01)^{88/365}} = 22.94 \]

\[CF_0 = +23.25 + 2 + 1.51 + 2 + 1.40 + 2 = 23 + 2 = 25 \]

\[20 \]

\[-20 + 2 \]

\[+23 + 2 \]

\[23 + 2 \]

\[0 + 2 \]

\[0 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]