Recount Inc. has a current price of $60 per share. For each of the next two years, Recount’s stock price will either rise $12 per share or fall $8 per share. Thus, Recount’s stock price will equal either $72 or $52 per share one year from today, and Recount’s stock price will equal either $84 or $64 or $44 per share two years from today. Assume that the risk-free interest rate equals 6% and that replicating portfolios for a particular call on Recount would need to consist of the following:

Today: $\Delta = +0.8743, B = -35.9644$

One year from today:
- If Recount’s stock price climbs to $72: $\Delta = +1.0, B = 47.1698$
- If Recount’s stock price falls to $52: $\Delta = +0.7, B = -29.0566$

a. What transactions would be required today and one year from today to build the replicating portfolios?
b. Assume Recount’s stock price climbs to $72 next year. Calculate the possible payoffs two years from today on the portfolio you built one year from today ($\Delta = +1.0, B = -47.1698$)?

c. Assume Recount’s stock price falls to $52 next year. Calculate the possible payoffs two years from today on the portfolio you build one year from today ($\Delta = +0.7, B = -29.0566$)?

Wall Street Journal Questions are on the back of this page.

a. Today \Rightarrow (Buy 0.8743 shares) + (Short 35.9644 of bonds)

In one year:
- If $S = 72$ \Rightarrow Buy 0.1257 shares \Rightarrow Short 9.0564 of bonds (to lend)
 1) If do nothing, $B = 38.1223 = -35.9644(1.06)$
 \Rightarrow change $= 47.1698 - (-38.1223) = 85.0921$
 2) Δ value of shares $= 0.1257 \times 72 = 9.0564$
 \Rightarrow short 9.0564 of bonds to lend.

If $S = 52$ \Rightarrow Sell 0.1743 shares $= 0.7 - 0.8743$
 \Rightarrow Buy 9.0636 of bonds + return to lender
 1) If do nothing, $B = 38.1223$
 \Rightarrow change $= -29.0566 - (-38.1223) = -74.0654$
 2) Δ value of shares sold $= 0.1743 \times 52 = 9.0636$
 \Rightarrow buy 9.0636 of bonds w/ funds

b. If $S = 84$, pay off = $1(84) - 47.1698(1.06) = 39.6266$
- If $S = 64$, pay off = $1(64) - 47.1698(1.06) = 14.6266$
- If $S = 44$, pay off = $1(44) - 29.0566(1.06) = 0.6266$

C. If $S = 64$, pay off = $0.7(64) - 29.0566(1.06) = 14.6266$
- If $S = 44$, pay off = $0.7(44) - 29.0566(1.06) = 0.6266$