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Abstract 
Improvement of control systems entails collection of 

more information about the process and/or more effective 
use of that information. We present manufacturing process 
signature analysis to construct a relationship between col- 
lected information (process signatures) and the quality of 
process output, which can be used for on-line monitoring 
and control. The general procedure consists of feature 
extraction, feature selection, and classification. 

Extraction of large sets of features from signatures is 
straightforward, and several classification schemes are 
available, with neural networks being the most general and 
powerful. Feature selection, however, is generally quite diffi- 
cult for complex data structures. We present several feature 
extraction methods and show that neural networks can be 
useful in choosing different feature sets. Using a data set 
from an automated solder joint inspection system, we 
demonstrate the unique capabilities of neural networks for 
both feature selection and classification, using more tradi- 
tional statistical classification techniques as a benchmark. 

Keywords: Manufacturing Process Monitoring, Feature 
Selection, Manufacturing Process Signature Analysis, Neural 
Network Applications 

Introduction 
Motivation 

Most manufacturing processes are monitored for 
output quality, either continuously or by sampling. 
Process monitoring assesses whether the process is 
performing its function adequately so that appropriate 
corrective actions can be taken if necessary. Inputs to 
the process monitor include one or more measured 
attributes of the product or process that reflect the 
product's ability to perform its intended function. 

To improve the quality of manufacturing process- 
es, we seek better monitoring and control systems. 
One approach is to use more sophisticated measure- 
ments. At every stage of even the simplest manufac- 
turing process, there are many opportunities for 
quality measurements involving process inputs (for 
example, material thickness or temperature), 
process attributes (such as feed rate, spindle speed, 
or tool vibration), and process outputs (such as crit- 

ical dimensions or surface finish). To monitor a larg- 
er process or series of process steps, we could 
inspect the finished product or assess ultimate cus- 
tomer satisfaction through questionnaires or warran- 
ty information. Integration of computers into the 
manufacturing environment (CIM) facilitates collec- 
tion of these different process measurements, but 
information alone is not enough; without an appro- 
priate procedure for analysis and evaluation of this 
information, the resultant flood of data can con- 
found process improvement efforts. 

Our approach to process monitoring is called manu- 
facturing process signature analysis. During each 
cycle, we measure one or more process signals and/or 
parameters over the duration of the process. We then 
analyze these measurements to determine the quality 
of the process iteration that just took place. Ideally, this 
quality classification is then fed back through an ap- 
propriate controller to close the process control loop. 

Related Signature Analysis Work 
Although the focus of this paper is on manufac- 

turing applications, we draw on research from a 
broad range of disciplines. From analysis of human 
electrocardiogram (ECG) signals (the ECG signa- 
ture), information about the health of a patient is 
obtained. 1 The ECG signals are broken down into a 
series of basic waveform elements called complexes 
and segments. These are analyzed through syntactic 
pattern recognition techniques where grammars or 
rules of syntax classify the ECG signatures. 

Computer-access security systems employ a signa- 
ture consisting of the length of time between key- 
strokes in the entry of a password, z A Bayesian classi- 
fier is used to authenticate a given password by com- 
paring the current entry against a known signature. 

In manufacturing research, success has been 
achieved using acoustical signals from machining and 
forming operations. 3"s In work involving punch 
stretching and deep drawing of aluminum sheetmetal, 
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an acoustical sensor is placed in direct contact with 
the sheetmetal during the forming process. 6 Energy 
content, spectral characteristics, and time-series 
behavior of the resulting signature are then used to 
identify critical transitions in the forming process. 

From this literature, we recognize and adopt a 
general principle for process signature analysis: 
parameterize the original signature through extrac- 
tion of key features and then find an appropriate 
classification for the signature based on these 
extracted features. For the ECG signature, the shape 
parameters of each component complex (features) 
are used to determine the patient's health (classifica- 
tion). For password security, keystroke timing is 
used to authenticate the user's identity. For forming, 
the energy, spectral characteristics, and time-series 
behavior are used to characterize the forming 
process. Success of this principle is critically depen- 
dent on the ability to locate and extract appropriate 
features of the original signature. 

In this paper, we extend the feature-extraction strat- 
egy for signature analysis to include neural network 
based schemes for feature selection and quality classi- 
fication. The most important contribution of this paper 
is the development of a neural network based feature 
selection scheme that can identify the most useful fea- 
tures for a simplified on-line monitoring system. 

To develop our signature analysis approach, we first 
explain a progression of signature classification tools 
that serve to highlight the specific utility of neural net- 
works and the important role of feature selection in the 
process. Next we describe a data set from an automat- 
ed solder joint inspection project, which was the pri- 
mary vehicle of research. We then show how the sig- 
nature analysis methodology is applied to solder joint 
inspection data. We conclude with a discussion of the 
strengths and weaknesses of our approach. 

Signature Analysis Tools 
There are many signature analysis utilities avail- 

able, from simple statistical process control to 
advanced pattern recognition techniques using artifi- 
cial neural networks. Selecting the combination of 
signature analysis tools most effective for a given 
problem requires an understanding of the relationship 
between signature and quality as well as the capabili- 
ties and limitations of the analysis tools employed. A 
progression of classification tools is described below 
in order of increasing sophistication. Our discussion 

presents the capabilities and limitations of each tool; 
successive tools overcome some limitations at the 
cost of implementation complexity. 

Statistical Process Control 
One of the most common process monitoring 

tools in industry today is statistical process control 
(SPC). Traditionally, SPC entails sampling the 
process output at given intervals and then measuring 
some critical attribute of the sampled parts. Control 
limits are established based on the mean and devia- 
tion of the "normal" process, and the process is said 
to be "out of control" when any data points from 
process samples fall outside these control limits. 

When multiple discrete measurements are 
required to gain an adequate description of a 
process, we say that the signature is multidimen- 
sional. The basic practice of SPC can be extended to 
accommodate multidimensional signatures by 
expanding the one-dimensional control limits into a 
multidimensional control limit mask. Figure 1 illus- 
trates an example of a multidimensional signature in 
the measurement of bias force of a computer's hard 
disk drive assembly. 

With multidimensional SPC, each dimension of 
the signature has a corresponding pair of control 
limits determined based on the mean and variance of 
that dimension, measured for several good-quality 
drives. The set of control limits then constitutes a 
control limit mask. The accept or reject decision is 
based on whether a given signature falls entirely 
within the bounds of the control limit mask. A com- 
mercial system using this basic technique was devel- 
oped at General Motors Corp. and is now publicly 
available through Assurance Technologies Inc. 7,a 

While this scheme may be suitable for a variety of 
process signatures, it is not difficult to imagine cir- 
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Figure 1 
Multidimensional Control Limit Mask 
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cumstances where application of control limits would 
produce misleading results. Consider the scenario i l -  
lus t ra ted  in Figure 1, where the desired bias force sig- 
nature follows the form of the nominal signature, and 
departures from the nominal form constitute failure. 
The control limit mask does not capture these failures. 

Feature Extraction 
We can avoid the above difficulties through fea- 

ture extraction. Feature extraction reduces the 
amount of data we must process without discarding 
useful information. Consider the bias force signa- 
ture shown in Figure 2; in this case, two features are 
extracted from the original signature--the slope of 
the best-fit line and the range of the signature's 
extreme points. By plotting slope versus range for 
many samples of hard disk drive assemblies, we 
arrive at a feature-space scatter plot as shown in 
Figure 3. Three signature classes become apparent 
by the clustering of data points. Class 1 in the figure 
corresponds to good signatures, which follow the 
form of the nominal curve (both range and slope are 
low), Class 2 (higher range) corresponds to signa- 
tures with a discontinuity, and Class 3 (higher slope 
and range) corresponds to signatures that span the 
control limit range without a discontinuity. 

In the bias force example we extracted two fea- 
tures, and the resulting feature-space plot is two- 
dimensional. There are also two one-dimensional 
feature spaces associated with each individual fea- 
ture. These one-dimensional spaces, shown opposite 
the axes in Figure 3, are simpler to interpret; howev- 
er, the clustering of classes that we observed in the 
two-dimensional space may not be so apparent. As 
the number of features grows, the number of  feature 
spaces increases tremendously. For a signature 
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Figure 2 
Feature Extraction 

described by 23 features, as with the data set used 
for this research, there are more than 8 million dis- 
tinct feature spaces. Before we address the question 
of which of these 8 million feature spaces is most 
effective for the given problem, a formulation for the 
classification decision function within the context of 
feature space must be examined. 

Linear Statistical Classification 
Classification within the context of feature space 

requires a mathematical formulation fundamentally 
different from the control limits of SPC. The objec- 
tive here is to formulate a function whose output 
indicates the signature class. Unlike the accept/ 
reject decision of SPC, we can now consider multi- 
ple classes of process output. In this section we 
describe the traditional linear statistical classifier. 

Bayes Classifier 
In geometric terms, a linear statistical classifier 

parameterizes each class of data with its mean and 
covariance. (The geometric interpretation given here 
cannot describe all of the details of  statistical classi- 
fication; rather the purpose is to provide an intuitive 
understanding of the essence of statistical classifica- 
tion.) Based on these parameters, an ellipse is con- 
structed about each class of  data, as shown in Figure 
4. The common secant between two ellipses then 
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Figure 4 
Construction of Linear Statistical Classifier (Bayes) 

describes the linear decision function separating the 
two classes of  data. 

In mathematical terms, construction of  a linear 
statistical classifier (Bayesian) begins with the 
assumption that each class o f  data can be described 
by a normal probability density function. 9 Given this 
assumption, the likelihood that a given signature 
comes from a given class, ~oi, is as follows: 

1 
p(x[oJ,)-- U e x p  

l r -I [--~(x-ml) C ~ (x-mi)]i=l...M 

where: 

X 

(O i 

n 
G 
m 

M 

= feature vector for a given signature 
= ith class of  data 
= number of  features 
= covariance matrix for class i 
= mean vector for class i 
= number o f  classes 

For a one-dimensional feature vector, the above 
expression reduces as follows: 

1 [ l ( x - m i ~  2 ] p(xlogl) = ~ e x p / - ~ / - - /  i=  1...M 
42/r0" i L ~. ~i ) 

where: 

o'i = standard deviation of  class i 

The classification decision for a signature charac- 
terized by a feature vector involves calculating the 
likelihood function for each possible class and then 
selecting the class with the largest corresponding 

likelihood: classify signature, x, as class o~, if p 
(xlcoi) > P(xloj) for i--/:j). The application of  a linear 
statistical classifier is restricted to those problems that 
conform to its underlying assumptions, as follows: 

1. Normality: Each feature in the feature vector is 
normally distributed about some mean. 

2. Linear Separability: Each class o f  output is lin- 
early separable from all other classes. 

Prediction of Error 
We would like to quickly evaluate how much 

class-discerning information a set o f  signatures car- 
ties, without constructing and testing a complete lin- 
ear statistical classifier. In predicting the success 
rate of  the linear classifier we can also estimate the 
utility o f  each feature in the overall classifier perfor- 
mance. To do this efficiently, we do not examine 
every individual signature, but we evaluate the data 
set as a whole and predict the expected contribution 
of  each feature. 

Our prediction of  error begins with a measure of  
feature quality that is based on a set of  features' abil- 
ity to separate the classes. The measure is called the 
Mahalanobis distance, given as follows: 9 

FQ 0 = (mi- my)rCljl(mi- my) 

co : ½ (c,+cj) 

where: 

FQo = Mahalanobis distance between class i and 
class j (feature quality with respect to 
class i and class j )  

mi = mean vector for class i 
ms = mean vector for classj  
C o = effective covariance matrix for class i and 

class j  
Q = covariance matrix for class i 
Cj = covariance matrix for c lass j  

In one dimension (for one feature), the above 
expressions can be reduced to the following: 

(m i - mj)Z 

! 
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where: 

o- 0 = effective standard deviation for class i and 
classj  

o'i = standard deviation of class i 
o) = standard deviation of class j 

In essence, the Mahalanobis distance is a feature 
quality score based on the signal-to-noise ratio 
between two classes of data. The "signal" is the dis- 
tance between the classes in feature space, and the 
"noise" is the variation or spread of each class. From 
this feature quality score, a prediction of error can 
be calculated as follows: 

where: 

x 1 exp(-ly2)dy 

Besides the assumptions of a linear statistical clas- 
sifter (normality and linear separability), the predic- 
tion of error as defined above is subject to a third a- 
ssumption: covariance matrices for each class of data 
are approximately equal. In calculating the feature 
quality score between two classes of data, we use an 
effective covariance matrix, which is a simple averag- 
ing of the covariance matrices for each individual 
class. If the covariance matrices are not similar, then 
the effective covariance matrix does not accurately de- 
scribe the spread of the class' respective distributions. 

N e u r a l  N e t w o r k  P a t t e r n  C l a s s i f i c a t i o n  
All of the classification tools presented thus far 

have their basis in normal, linear statistical theory. As 
such, any application to which these tools can be reli- 
ably applied is restricted to normal and linear 
domains; however, many process measurements are 
not so well behaved. While these ill-behaved signa- 
tures may have significant content (class-discerning 
information), traditional classification tools are not 
able to extract this content. We now turn to artificial 
neural networks as an alternative computational clas- 
sification technique. Artificial neural networks make 
classification decisions by a fundamentally different 
mechanism, so they are not encumbered by the rules 

of normal, linear statistics. While we provide a brief 
introduction to artificial neural networks here, there 
are several sources of more detailed explanations, m l  

Like the Bayes classifier, a neural network pro- 
duces a mathematical function whose input is the 
process signature (feature vector x) and whose out- 
put is the classification decision. The way we arrive 
at the mathematical function is fundamentally dif- 
ferent, though. Formulation of a neural network also 
begins with a training set of signatures with known 
classifications. Each signature is applied to the input 
nodes of a network of simple processing elements. 
Numerical values propagate through the network via 
nonlinear weighted connections and eventually 
result in a classification decision at the output 
nodes. In all likelihood, this decision will be incor- 
rect (output values will not correspond to the known 
classifications) because the weights within the net- 
work structure are initially randomized. 

At this point, a learning algorithm compares the 
actual network output with the desired output. Then 
based on the error, weights within the network struc- 
ture are modified. After many iterations, the network 
eventually "learns" to distinguish among signatures 
from various classes. In formulating a decision func- 
tion with a neural network, no assumptions are made 
regarding the underlying distribution of the data or 
linear separability. Instead, the motivating force 
behind the learning algorithm is the minimization of 
error. (Neural networks can be confused by the pres- 
ence of local minima. One solution to this problem is 
to simply train multiple networks with different initial 
starting weights. Alternatively, Gaussian noise can be 
added to the neural network inputs, which will serve 
to "bump" the solution out of local minimaJ 2) As 
such, a neural network will attempt to find the line or 
surface that most effectively separates the classes. 

After the network has been trained, each new sig- 
nature for classification, characterized by a feature 
vector x, is simply applied to the input nodes of the 
network. Output values determine which class the 
signature best matches. The classification decision 
function, therefore, is the nonlinear mapping found 
in the network training stage. 

The Perceptron 
The fundamental processing element in the neural 

network classifier used for this study is the percep- 
tron, introduced by Rosenblatt. 13 A perceptron, shown 
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in Figure 5, calculates the weighted sum of its inputs 
and passes the result through a nonlinear thresholding 
function. The thresholding function shown in the fig- 
ure is a simple signum function. Some other common 
threshold functions used in neural networks include 
the hyperbolic tangent and the sigmoid. The nonlinear 
threshold function allows a neural network to extend 
the reach of pattern classification into the domain of 
generalized nonlinear functions. 

Multilayer Feed-Forward Neural Network 
The neural network structure used for this study is 

a multilayer feed-forward neural network that uses 
the back-propagation learning algorithm. A general 
schematic of this network is shown in Figure 6. The 
input layer has one node for each feature extracted 
from the raw signature. Succeeding layers of the net- 
work consist of  one or more perceptron nodes. The 
output layer, where the classification decision 
emerges, also consists of  one or more perceptron 
nodes. The actual number of output nodes depends 
on the number of possible classes in the data set as 
well as on the way we code the different classes. For 
instance, only one output node is needed for a two- 
class problem where an output of +1 corresponds to 
the first class and an output of -1  corresponds to the 
second class. In problems that involve a larger num- 
ber of classes, we could assign one output node to 
each possible class or we could encode each class as 
a binary number, thereby reducing the number of 
output nodes needed to identify each distinct class. 
Layers between the input and output layers are 
called hidden layers. Lines between various nodes in 
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Figure 5 
The Perceptron 

the network represent weighted connections through 
which processing elements communicate. (The bias 
node in Figure 6 acts like an input layer node except 
that it is held at a constant value. The bias node 
allows the neural network to shift a decision func- 
tion away from the origin in feature space.) 

The neural network structure described above, in 
essence, represents a complex nonlinear function. 
The learning algorithm adjusts the parameters of the 
nonlinear function until the classification error is 
minimized. Given a sufficiently complex topology, a 
neural network could eventually learn to correctly 
classify with zero errors. In general, this is not a 
desirable result because the neural network is func- 
tioning as a lookup table (memorizing) instead of a 
generalized classifier. Excessive complexity in the 
network structure prevents the network from making 
generalized decisions. Several authors offer guide- 
lines on selection of a network structure. 11,14'1s 

Neural Networks in the Presence of Nonlinearity 
and Nonnormality 

There are two important situations in which a 
neural network is particularly useful. The first case 
is when a nonlinear decision function is required to 
separate two classes of data. The second case is for 
nonnormal data distributions, as illustrated by 
Figure 7. The outliers in the distributions invalidate 
the assumption of normality. A statistical classifier 
constructs a decision function at the intersection of 
the normal density functions for the two classes. In 
contrast, a neural network avoids these difficulties 
by ignoring the assumptions and instead moves the 
decision function with each iteration of the learning 
process until classification error is minimized. 
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Figure 6 
Multilayer Feed-Forward Neural Network 

25 



Journal of Manufacturing Systems 
Vol. 14/No. 1 

Neura l  N e t w o r k  Dec is ion  Reg ions  

I Ic'm21 I~\\\\~lc~='l~\\\~ Ic~=21 I~\Nc~=II~I 
Statistical Classifier Decision Regions 

I I 

I ~u..~.o..al/ I | [I 
I Distribution for k • • - . , I 1 
~ ~  I1 .1 "~  .11 I inc.= 
" 11111, 

 jli nl 
Feature Value 

Figure 7 
Classification Decision Regions for Nonnormal Distributions 

Feature Selection 
Given a perfect understanding of a process and its 

corresponding signatures, we could theoretically 
parameterize the signature with a finite set of 
descriptive features without discarding useful signa- 
ture content. In reality, feature extraction may 
involve a significant amount of  guesswork in 
proposing features because we must contend with an 
imperfect understanding of the process. It is gener- 
ally necessary to parameterize the signature with an 
abundance of features in the hope that a subset will 
yield useful information. The difficulty associated 
with this approach is that the remaining features that 
do not add useful information do add complexity to 
the classification problem. Clearly, if the goal is 
development of an on-line process control tool, use- 
less features should be eliminated. 

Feature selection is the process of  eliminating 
those features that do not contribute toward the goal 
of discriminating among different classes of  output. 
Four different heuristic algorithms were investigated 
during this research: 

1. One-dimensional prediction of error 
2. One-dimensional statistical classification 
3. One-dimensional neural network classification 
4. Multidimensional neural network first-layer 

weights 

A description of each selection algorithm follows, 
along with respective advantages and drawbacks. 

One-Dimensional Prediction of  Error 
The one-dimensional prediction of error scheme, 

unlike the other schemes, is limited to two-class prob- 

lems. (Prediction of error, as defined earlier, is based 
on the Mahalanobis distance between two classes of 
data.) In a two-class problem, the utility of each fea- 
ture is examined individually through normal, linear 
statistics according to the following algorithm: 

1. Calculate the mean and standard deviation for 
each feature within each class. 

2. Calculate the one-dimensional Mahalanobis dis- 
tance between classes for each feature. 

3. Calculate a prediction of classification error for 
each feature. 

4. Rank the features based on the prediction of 
classification error. 

Predictions that result from the algorithm above 
represent the classification error that would be 
incurred if the given feature was the only informa- 
tion available (interaction among features is 
ignored). If the data set conforms to the three 
assumptions associated with a prediction of error--  
normality, linear separability, and similar covariance 
among classes--this scheme provides the least cost- 
ly (in terms of computation time) evaluation of the 
feature set. 

One-Dimensional Statistical Classification 
With one-dimensional statistical classification, 

like one-dimensional prediction of error, each fea- 
ture is examined individually, but the data are 
applied to a statistical classifier. Steps in the one- 
dimensional statistical classification algorithm are 
as follows: 

1. Calculate the mean and standard deviation for 
each feature within each class. 

2. Apply each signature in the data set to the one- 
dimensional likelihood function for each class. 

3. Classify each signature according to magnitude 
of the likelihood function for each class. 

4. Determine the classification error by comparing 
the computed classifications against the known 
signature classifications. 

5. Rank the features based on the classification 
error for each feature. 

The one-dimensional statistical classification 
scheme has the following advantages over the one- 
dimensional prediction of error scheme: 

1. Statistical classification is not restricted to two- 
class problems. 
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2. Assumption of similar covariance among class- 
es is eliminated. 

3. Actual data are applied to the classifier, helping 
to expose deviation from normal, linear statistics. 

The first two advantages are self-explanatory, but 
the third deserves closer examination. The predic- 
tion of error scheme employs the assumptions of 
normal, linear statistics and then decides the classi- 
fication error based on what the data would look like 
if it conformed to these assumptions. The statistical 
classifier scheme employs the same assumptions, 
but instead of relying on those assumptions, they are 
tested against the actual data. Deviation from the 
assumptions of normal, linear statistics can then be 
exposed in the form of higher misclassification 
rates. The prediction of error scheme, though less 
costly in terms of time and computing resources, is 
more easily fooled because it makes only indirect 
use of the data in arriving at its conclusion. 

One-Dimensional Neural Network Classification 
With the one-dimensional neural network 

scheme, like the preceding schemes, the utility of 
each feature is examined in isolation from the other 
features. This scheme is similar to the classification 
scheme except that a neural network classifier is 
used in place of normal, linear statistics. The algo- 
rithm is as follows: 

1. Train a one-input neural network for each feature. 
2. Determine the classification error of each one- 

input neural network by comparing actual output 
against desired output. 

3. Rank the features based on the classification 
error for each feature. 

The following neural network structure was used 
for this purpose: 

1. Back-propagation learning algorithm 
2. Hyperbolic-tangent thresholding function 
3. One input node for the feature being evaluated 
4. Four perceptron nodes in the first hidden layer 
5. Two perceptron nodes in the second hidden layer 
6. Number of output nodes depends on how many 

classes of output exist. For a two-class problem, 
one output node is sufficient. 

The primary advantage of a neural network clas- 
sifier is its independence from normality and linear- 

ity issues. Minimization of error underlies the itera- 
tive learning algorithm of neural networks, with no 
assumption of normality. Furthermore, the thresh- 
olding function in each processing element allows 
the neural network to twist and contort the decision 
function in a manner which is not available through 
traditional statistics. 

Multidimensional Neural Network 
First-Layer Weights 

Each selection scheme presented above, including 
one-dimensional neural network classification, eval- 
uates the utility of each feature in isolation from the 
other features. Interactions between features are 
ignored. In contrast, the first-layer weight scheme 
takes a global view of the full feature set. The first- 
layer weight algorithm is as follows: 

1. Train a multidimensional neural network using 
the full feature set as input to the network. 

2. Determine the sum of the absolute values of the 
first-layer weights associated with each feature. 

3. Rank the features based on the sum of first-layer 
weights. 

The following neural network structure was used 
for the first-layer weight scheme: 

1. Back-propagation learning algorithm 
2. Hyperbolic-tangent thresholding function 
3. N input nodes (one for each feature) 
4 .2N perceptron nodes in the first hidden layer 
5. N perceptron nodes in the second hidden layer 
6. Number of output nodes depends on how many 

classes of output exist. For a two-class problem, 
one output node is sufficient. 

The significance of first-layer weights in a multi- 
dimensional neural network can best be explained by 
reexamining the general structure of a neural net- 
work as shown in Figure 6. Consider all of the lines 
representing the weighted connections between a sin- 
gle input node and the first hidden layer. With the 
first-layer weight scheme, the importance of a given 
feature is measured by the sum of the absolute values 
of this feature's first-layer weights. In the case of all 
of the weights being zero or nearly zero, the feature 
is effectively filtered from the classification deci- 
sion. Conversely, if the weights are large, the feature 
will have a greater effect on the classification deci- 
sion, thus the rationale behind the first-layer weight 
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scheme. This scheme can recognize nonnormality 
and nonlinearity with the added advantage of recog- 
nizing interaction among features. 

The first-layer weight scheme does not explicitly 
address the presence of redundant features, although 
we would expect the first-layer weights associated 
with redundant features to be similar. While redun- 
dant features will not hinder the accuracy of the net- 
work, elimination of these features would further 
reduce computational complexity. To further simplify 
the network, we must examine the weights associated 
with each feature and identify any similarities. To ver- 
ify redundancy, we must then eliminate all but one of 
the redundant features and retrain the network. If the 
classification error is unchanged, redundant features 
have been successfully identified and removed. 

Selecting the Right Features 
Each feature selection scheme described above 

simply ranks the utility of  the features. The question 
remains of  how many features to employ in an actu- 
al classifier. One solution to this problem is to test a 
succession of classifiers, adding additional features 
with each test. When performance of the classifier 
does not improve significantly with the addition of 
new features, feature selection is complete. 
Alternatively, feature selection scores can be exam- 
ined and the feature cutoff can be placed where there 
is a significant drop in the feature selection score. 
For this research, we directly compared the four fea- 
ture selection schemes' abilities to find the best fea- 
tures, so we used an arbitrary cutoff of the best five 
features for each scheme. 

Choosing a Classifier 
Once an appropriate subset of features has been 

selected, the task of constructing a classifier remains. 
If a given data set conforms to the assumptions of 
normality and linear separability, there is no need to 
expend additional time and energy developing a neur- 
al network classifier. A neural network and a statisti- 
cal classifier will arrive at the same decision function 
for well-behaved data sets. If a given data set does not 
conform to the assumptions of normality and linear 
separability, a neural network can be a highly effec- 
tive solution. While the amount of time required to 
develop a neural network is significantly greater than 
a statistical classifier, cycle time of the actual classi- 
fier is not necessarily significantly greater. If there is 
any question regarding the integrity of the data with 

respect to the assumptions of normal, linear statistics, 
then a neural network is worth investigating. 

Automated Solder Joint Inspection 
The data set that was the primary vehicle of 

research for this paper came from an automated sol- 
der joint inspection project at Digital Equipment 
Corp. The goal of automation was replacement of 
manual visual inspection methods for surface-mount 
electronic components (SMD technology). With sur- 
face-mount technology, printed circuit boards are 
screened with solder paste and then the components 
are placed onto the boards using automated equip- 
ment. The boards are then heated to reflow the sol- 
der, creating the lead bonds. Although surface- 
mount technology allows the electronics industry to 
continue reducing the size of components, new 
problems have been introduced. In particular, very 
high lead density causes manual visual inspection 
methods to become less and less effective (as mea- 
sured by higher classification error). Inefficiency 
drives the need for redundant inspection and testing, 
which in turn provides the impetus for automated 
inspection methods. 

Modes of Solder Joint Failure 
Among the common problems associated with the 

SMD assembly process is the application of incor- 
rect solder paste volume. Insufficient or excess sol- 
der conditions have been correlated with premature 
failure of the solder bond due to thermal cycling of 
the circuit. Electronic testing of  circuit boards can 
detect more severe classes of defects, such as short 
and open circuits, but cannot guarantee that a board 
will remain defect-free over its life. 

The automated solder joint inspection system at 
Digital 16 is illustrated in Figure 8. A laser is directed 
at a single component lead while two infrared cam- 
era sensors monitor the temperature of the solder 
joint as it is heated and as it cools. These signals are 
digitized and stored for off-line analysis. Eventually 
these data would be utilized on-line with the results 
of our signature analysis scheme. 

These data represent the time derivative of the 
lead temperatures as observed by the two different 
cameras. Each camera extracts energy in a different 
infrared wavelength band. The result is a pair of 
thermal signatures for the solder joint, with each sig- 
nature consisting of a discrete time series of 500 
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Printed Circuit Board Signature 

Figure 8 
Automated Solder Joint Inspection 

data points (Figure 9). The physics underlying the 
success of  this inspection method involves the heat 
transfer characteristics of  the solder joints. The 
hypothesis is as follows: If the lead is well bonded, 
the board will conduct heat quickly away from the 
lead. If the connection is insufficient, heat transfer 
will be slower and the lead will heat excessively. If 
the solder mass is excessive, the joint will also retain 
more heat and will heat up slower. Accurate physical 
models of this phenomenon have not been proven. 

Data Collection 
The data for this study were collected by specially 

fabricating a series of circuit boards under the three 
solder paste conditions: excess, normal, and insuffi- 
cient. (These data were part of a larger experiment at 
Digital comparing the performance of several auto- 
mated solder joint inspection schemes and also other 
defect types that are not included in our data set.) 
SMD components were placed onto the solder pads 
and then the boards were heated in the conventional 
reflow process. Finally, each of the solder joints was 
inspected using the laser/infrared system described 
above. The solder joint data set consisted of 3510 sig- 
natures-1510 from solder joints with excess solder, 
1688 from solder joints with insufficient solder, and 
312 from solder joints with normal solder. Given 
three classes of  output, the signature analysis 
methodology can be applied to four distinct classifi- 
cation problems--three associated with class pairs 
and one associated with all three classes. From a 
manufacturing standpoint, a classifier that can distin- 
guish between insufficient and good solder condi- 
tions but ignores the existence of excess solder con- 
ditions is of marginal utility. From a research stand- 
point, however, each of these four problems can be 
employed in our exploration of the principles of sig- 
nature analysis methodology. As such, all four classi- 
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Figure 9 
Typical Thermal Signature 

fication decisions (excess-good, excess-insufficient, 
insufficient-good, and excess-insufficient-good) 
were investigated during this research. 

Feature Extraction 
For each signature, 23 numerical features were 

extracted from the raw data by analyzing the two sig- 
nal curves. In developing our list of candidate fea- 
tures, we drew first from our physical understanding 
of the process to define appropriate features. As an 
example, heat transfer theory suggests that the area 
under the temperature derivative curve up to the first 
zero crossing (see Figure 9) should be proportional 
to the total amount of heat absorbed by the solder 
joint during the measurement (features 14 and 15). 
Other physical features included peak times and 
peak values (features 1, 2, 4, and 5), minimum times 
and values (features 16-19), zero crossing times 
(features 13 and 14), and the ratio of the peak values 
(feature 3). The remaining features were statistical 
quantities computed for each signature, such as 
mean, variance, and RMS values (features 6-11). We 
also computed three features based on the "differ- 
ence curve" obtained by subtracting one signal 
curve from the other (features 20-22). The final fea- 
ture represented the R_MS value of an "error curve" 
obtained by subtracting the signal from the average 
of all good signal curves (feature 23). 

For this example application, feature extraction 
was conducted on an intuitive basis, although more 
interesting alternatives are available. Of particular 
interest is a method of feature extraction based on 
wavelet decomposition. '7 

Feature Selection 
Each of the four feature selection schemes 

described above was investigated to determine the 
success of each scheme and to test our understand- 
ing of the behavior of each scheme. The one-dimen- 
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sional prediction of error scheme was applied to 
only the two-class problems associated with distinct 
class pairs (excess-good, excess-insufficient, and 
insufficient-good), whereas the remaining schemes 
were applied to all four classification problems. 
Each feature selection scheme produced a feature 
ranking for each applicable classification problem. 
An evaluation of these rankings was carried out by 
selecting the top five features in each ranking and 
then calculating a prediction of error, statistical clas- 
sification error, and neural network classification 
error for each five-feature subset. 

Signature Analysis Results 
Results of  the signature analysis computations 

discussed in preceding sections of  this paper are pre- 
sented in Table 1. The four column groups in this 
table correspond to the four distinct classification 
problems, while the rows give the classification 

errors for individual features, feature subsets, and 
the full feature set. For example, results from the 
excess-insufficient problem are in the first column 
group: The prediction of error for feature Sig. Peak~, 
acting alone, was 32%, while the statistical and 
neural network classifiers had classification errors 
of  20% and 18%, respectively. For the same prob- 
lem, the first-layer weight scheme produced a subset 
of  five features that resulted in a prediction of 17% 
error and statistical and neural network classifica- 
tion errors of 17% and 14%, respectively. The next 
few sections of  this paper are devoted to an explana- 
tion of the characteristics and significance of the 
results in Table 1. 

Generation of Data Sets for Analysis 
I n  the  f o r m u l a t i o n  a n d  t r a i n i n g  o f  the  v a r i o u s  

c l a s s i f i c a t i o n  tools ,  r a n d o m  subse t s  o f  the  fu l l  da ta  

set  were  used.  T h e s e  subsets  c o n s i s t e d  o f  500  e x c e s s  

Table 1 
Signature Analysis Classification Results 

Excess-Insufficient Insufficient-Good 

Individual 
Features P(e) Class NNet P(e) Class NNet 

1 Sig. Peakl 32% 20% 18% 26% 18% 17% 
2 Sig. Peak2 37% 21% 17% 26% 17% DNC 
3 Peak Ratio 48% 44% DNC 49% 61% DNC 
4 Peak Time 1 47% 48% DNC 30% 29% 26% 
5 PeakTime2 46% 49% DNC 30% 31% DNC 
6 Mean 1 42% 48% 42% 43% 65% DNC 
7 Mean2 28% 21% 20% 28% 20% 16% 
8 Varianee l 19% 16% 16% 20% 18% 15% 
9 Variance2 43% 50% DNC 39% 55% DNC 

10 Sig. RMS 1 20% 16% 16% 21% 17% 13% 
11 Sig. RMS2 30% 19% 18% 27% 19% DNC 
12 Zero Xing 1 44% 50% DNC 45% 62% DNC 
13 Zero Xing2 43% 41% 41% 29% 37% DNC 
14 Area Belowl 27% 17% 18% 27% 16% 15% 
15 Area Below2 27% 22% 21% 27% 20% 18% 
16 Sig. M i n l  39% 30% 18% 24% 23% 15% 
17 Sig. Min2 49% 50% DNC 44% 48% DNC 
18 MinTimel  49% 45% DNC 45% 35% DNC 
19 MinTime2 38% 39% 39% 41% 28% DNC 
20 Peak of Dill 50% 52% DNC 43% 46% 24% 
21 MinofDiff  39% 32% DNC 26% 26% DNC 
22 Zero XingDiff 50% 49% DNC 50% 66% DNC 
23 ERMS2 45% 45% DNC 47% 71% DNC 

Best 5 Features 
1-D Prediction of Error 17% 22% 17% 19% 38% 15% 
1-DStatistiealClassification 17% 18% 14% 16% 25% 12% 
1-DNeuralNetClassification 17% 18% 14% 18% 33% 12% 
First-LayerWeights 17% 17% 14% 15% 26% 9% 

Full Feature Set 14% 21% 13% 9% 24% 9% 

Excess-Good 

P(e) Class NNet 

50% 67% DNC 
48% 66% DNC 
49% 64% DNC 
43% 62% DNC 
42% 58% DNC 
45% 53% DNC 
49% 47% DNC 
48% 43% DNC 
48% 66% DNC 
48% 50% DNC 
49% 62% DNC 
47% 53% DNC 
37% 50% DNC 
50% 40% DNC 
50% 55% DNC 
49% 67% DNC 
46% 60% DNC 
48% 65% DNC 
47% 56% DNC 
46% 69% DNC 
49% 67% DNC 
50% 67% DNC 
46% 67% DNC 

34% 54% 27% 
46% 57% DNC 
N/A N/A N/A 
33% 44% 26% 

24% 56% 22% 

Excess-Good- 
Insufficient 

Class NNet 

51% 32% 
52% 30% 
76% DNC 
58% DNC 
59% DNC 
71% 53% 
39% 35% 
36% 31% 
80% DNC 
39% 29% 
52% 31% 
73% DNC 
64% 50% 
34% 31% 
48% 35% 
56% DNC 
69% DNC 
60% DNC 
49% 48% 
70% DNC 
58% DNC 
79% DNC 
81% DNC 

N/A N/A 
59% 28% 
63% 29% 
57% 26% 

52% 27% 
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signatures, 500 insufficient signatures, and 200 
good signatures. For the statistical tools (prediction 
of error and statistical classification), one subset 
was used for training and testing. For neural network 
classification, two subsets were drawn from the full 
data set, one for training and one for testing. The 
reason for using two different subsets for training 
and testing was suggested earlier: Improper selec- 
tion of  the neural network structure can cause the 
neural network to act as a lookup table instead of a 
generalized decision function. By training the neur- 
al network with one data set and testing it with 
another, we can verify formulation of  a generalized 
decision function. 

Explanation o f  Anomalies in Results Table 
In several instances, neural network classification 

was unsuccessful because the neural network was 
not able to converge on a decision function. DNC 
entries in Table I are instances where the neural net- 
work "did not converge" Whenever inputs to a neur- 
al network do not contain sufficient content (class- 
discerning information), a neural network learns to 
select the class that it saw most frequently during 
training, regardless of  input. For the excess-good 
classification problem, the neural networks were 
trained with 500 excess signatures and 200 good sig- 
natures. In this case, a neural network that did not 
converge learned to classify every signature as 
excess because it was presented with more excess 
signatures during training. In actuality, this corre, 
sponds to a classification error rate of  29% 
(200/700); however, we enter DNC in the results 
table. In almost every case where the neural network 
could not converge, such as feature Sig. Peak1 in the 
excess-good problem, the statistical prediction of  
error (50%) and statistical classification error (67%) 
were even less useful. 

N/A entries in Table 1 denote two situations 
where classification error could not be calculated. In 
the first situation, the individual neural net feature 
selection scheme failed for the excess-good classifi- 
cation problem because none of the individual neur- 
al networks could converge on a decision function. 
In the second instance, the prediction of error 
scheme failed for the excess-insufficient-good clas- 
sification problem because prediction of error was 
not defined for the three-class problem. As a result, 
these schemes could not offer a ranking of features. 

Feature Content and Signature Content 
For the excess-insufficient problem, feature Sig. 

Min~ produced prediction, statistical, and neural net- 
work classification errors of 49%, 50%, and DNC, 
respectively. Clearly, this feature cannot offer any 
more than a random guess as to the appropriate clas- 
sification. This is only one of  many examples where 
the various classification tools were not able to per- 
form any better than the toss of  a coin. These high 
classification errors occur due to lack of signature 
content. The greatest challenge in the development 
of  a process-monitoring system involves what in this 
paper we call signature content, feature quality, or 
simply observability. In the extreme case, if we 
choose an inappropriate sensor measurement that 
does not contain the information needed to predict 
quality, then an entirely different measurement 
scheme must be chosen. Techniques presented in 
this paper cannot remedy this situation, as exempli- 
fied by the excess-good classification problem. 

Neural Network Classification vs. Statistical Tools 
An interesting scenario arises when a neural net- 

work classifier can perform with reasonable accura- 
cy, while the statistical tools fail. In these cases, the 
neural network has found a better nonlinear or non- 
normal decision function that was invisible to tradi- 
tional classification tools. As an example, in the 
insufficient-good problem the first-layer weight 
scheme produced a subset of features that generated 
a 9% error rate with the neural network and a 26% 
error rate with the statistical classifier. Given the 
same information, the neural network performed 
significantly better. 

Throughout Table 1, the neural network classifi- 
cation error is lower than both the statistical predic- 
tion of error and the statistical classification error 
except in a few instances where the various error 
rates are similar to within a 1-2% noise factor. 
(Recall that random subsets of  data were drawn from 
the full data set for the development of  each tool. 
The noise factor is the result of  the slight differences 
in each random subset of data.) This is a direct result 
of the iterative learning process and nonlinear deci- 
sion functions of neural networks. While statistical 
tools are confounded by ill-behaved data, neural net- 
works exploit these differences. Conversely, when 
the assumptions of  normality and linear separability 
are fairly accurate, performance of statistical tools 
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and neural networks is similar. I f  the assumptions of  
normal, linear statistics hold true, neural networks 
and statistical tools will arrive at the same decision 
function and there is no need to implement a neural 
network classifier. 

Full Feature Set Outperforms Feature Subsets 
Neural networks using the full feature set invari- 

ably performed better than any individual feature 
and better than any subset o f  features. This suggests 
that neural networks can employ interactions among 
features, thereby generating a decision that is better 
than the sum of  its parts yet is still able to effective- 
ly filter those features that do not add useful infor- 
mation to the problem. As an example, consider the 
insufficient-good problem. In this case, the best 
individual feature (Sig. RMS 0 produced a 13% 
classification error, whereas neural network classi- 
fication with the full feature set produced a 9% 
classif icat ion error. This was accompl ished 
although more than half  the features had no signa- 
ture content at all (DNC). I f  the feature extraction 
process entails a significant amount o f  guesswork, 
we can be sure that a neural network will filter poor 
guesses. This is not the case with the statistical 
tools. In the excess-insufficient problem, the best 
individual feature (Sig. RMSI) produced a statistical 
classification error o f  16%, whereas the full feature 
set could do no better than 21%. Those features that 
lack content, while filtered out o f  the neural net- 
work decision function, serve to confuse statistical 
decision functions. 

Evaluation of Feature Selection Schemes 
In evaluating various feature selection schemes, we 

are most interested in those schemes that selected fea- 
tures with the most content. In all four classification 
problems, the first-layer weight scheme produced the 
lowest neural network classification error. In fact, the 
first-layer weight scheme produced a subset of  fea- 
tures that performed nearly as well as the neural net- 
work classifiers that used the full feature set. Con- 
sider the insufficient-good problem; the first-layer 
weight scheme produced a subset of  features with a 
neural network classification error of  9%, which was 
the same error produced by the full feature set. The 
remaining tools and schemes produced classification 
errors ranging from 12-38%. By eliminating useless 
features, we gain significant computational advan- 
tages without sacrificing classification accuracy. 

Normality Issues 
To evaluate the effect o f  normality on various 

classification tools, normality scores were calculat- 
ed for each feature in each class. These scores are 
presented in Table 2 along with results o f  the excess- 
insufficient classification problem. The normality 
score calculation consists o f  the Pearson product- 
moment  correlation between the given variable (a 
particular feature from a particular class) and the 
corresponding normal scores (standardized z-score). 

In the event that a given data set conforms to the 
assumptions of  normal, linear statistics, we would 
expect that the prediction of  error, statistical classifi- 
cation error, and neural network classification error 
would reflect similar results. Is Results shown in Table 
2 for the features Mean2, Sig. RMSI, Zero Xing2, and 
Area Below2 (features 7, 10, 13, and 15, respectively) 
tend to support this hypothesis. Conversely, we might 
expect that poor normality scores would produce 
results where statistical errors were significantly 

Table 2 
Excess-Insufficient Classification and Normality 

Excess-Insufficient Normality 

Individual Features P(e) Class NNet E I 

1 Sig. Peak 1 32% 20% 18% 0.70 0.90 
2 Sig. Peak 2 37% 21% 17% 0.60 0.55 
3 Peak Ratio 48% 44% DNC 0.89 0.87 
4 PeakTime 1 47% 48% DNC 0.40 0.91 
5 Peak Time2 46% 49% DNC 0.43 0.54 
6 Mean 1 42% 48% 42% 0.67 0.60 
7 Mean2 28% 21% 20% 0.95 0.95 
8 Variance 1 19% 16% 16% 0.95 0.86 
9 Variance 2 43% 50% DNC 0.32 0.25 

10 Sig. RMS 1 20% 16% 16% 0.97 0.91 
11 Sig. RMS2 30% 19% 18% 0.82 0.68 
12 ZeroXing 1 44% 50% DNC 0.72 0.70 
13 Zero Xing 2 43% 41% 41% 0.95 0.98 
14 Area Below 1 27% 17% 18% 0.99 0.89 
15 Area Below 2 27% 22% 21% 0.98 0.96 
16 Sig. Min 1 39% 30% 18% 0.51 0.78 
17 Sig. Min2 49% 50% DNC 0.30 0.26 
18 MinTime 1 49% 45% DNC 0.79 0.90 
19 MinTime2 38% 39% 39% 0.81 0.60 
20 PeakofDiff 50% 52% DNC 0.33 0.50 
21 MinofDiff 39% 32% DNC 0.46 0.59 
22 ZeroXingDiff 50% 49% DNC 0.75 0.71 
23 ERMS2 45% 45% DNC 0.59 0.48 

Best 5 Features 

1-D Prediction of Error 17% 22% 17% 
1-D Statistical Classification 17% 18% 14% 
1-D Neural Net Classification 17% 18% 14% 
First-Layer Weights 17% 17% 14% 

Full Feature Set 14% 21% 13% 
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higher than neural network errors; however, results do 
not corroborate this hypothesis. Consider the feature 
Sig. RMS2 (feature 11); here the normality scores for 
the excess and insufficient classes are .82 and .68, 
respectively, yet the statistical and neural network 
classification errors are 19% and 18%, respectively. 
This can be explained by noting that poor normality 
implies that the normal probability model does not 
accurately represent the data and any subsequent 
decision function may or may not separate the data. 
Low statistical classification error under these cir- 
cumstances cannot be taken as reliable. 

Conclusion 
Improvement of process control systems is of crit- 

ical importance to manufacturing firms today. In 
pursuit of  rapid improvement, we must make effec- 
tive use of the wealth of  process information now 
made available by on-line sensors and computation. 
The signature analysis methodology presented in 
this paper is offered as a formal approach to this 
challenge. The three-step analysis method (feature 
extraction, feature selection, and classification) 
accepts complex process signatures and their corre- 
sponding quality classifications as input and pro- 
duces a relationship between the signatures and the 
quality of  process output. 

In applying this method to a data set from an auto- 
mated solder joint inspection system, artificial neur- 
al networks were found to offer significant perfor- 
mance advantages over traditional classification 
tools, yet this performance was achieved at the 
expense of significant computational resources. To 
reduce computational cost of classification, we must 
reduce the complexity of the classification problem 
by employing only the most useful features. We call 
this the feature selection problem. Again we turn to 
the unique abilities of  artificial neural networks. In 
particular, first-layer weights in the neural network 
topology were found to be effective in identifying 
which components of the input signature contain the 
most useful information. Using first-layer weights, 
we can identify a subset of features that offers clas- 
sification rates comparable to the full feature set. 
This result also suggests that a neural network 
employing the full feature set can effectively filter 
those features that lack content. 

Although we can show the advantage that neural 
networks have over traditional classification tools, 

the classification error remains unacceptably high 
for the example data set. This difficulty cannot be 
resolved due to the lack of quality content in the par- 
ticular signatures. Our analysis suggests that either 
more or different information is needed to more 
accurately monitor the quality of the solder joint. 

The signature analysis methodology employed in 
this paper, along with the specific feature selection 
and classification tools, represents only one compo- 
nent of a larger signature-monitoring procedure, 
defined as follows: 

Step 1: 
Step 2: 
Step 3: 

Step 4: 

Establishment of quality metrics 
Selection of process measurement sensors 
Signature analysis (feature extraction, 
feature selection, and classification) 
Implementation of on-line monitoring/ 
control 

Steps 1 and 2 represent inputs to the signature 
analysis methodology described in this paper. We 
must first establish quality metrics so that we can 
definitively classify each instance of the process 
output. Without accurate classifications, we cannot 
build a detailed relationship between the process 
output and the corresponding signatures. Second, we 
must decide how to install sensors for process mea- 
surements (type, quantity, and location of sensors). 
As demonstrated in this paper, signatures that lack 
content cannot contribute to an accurate classifica- 
tion decision. In general, effective sensor selection is 
dependent on an understanding of the process. 
Given that such understanding is often limited, we 
would expect sensor selection to be modified after 
signature analysis is begun. The third step of  this 
procedure involves application of the signature 
analysis tools presented in this paper--feature 
extraction, feature selection, and classification. If, 
given the application of these tools, we discover that 
the signatures lack content, we must reevaluate sen- 
sor selection and configuration. Finally, in Step 4, 
we apply the results of the preceding steps in the 
form of a signature-monitoring system. We can also 
make the quality classification data available for on- 
line control, operator intervention, or both. 

Future Research Directions 
The first research question to address in develop- 

ing a process monitoring system is how to defini- 
tively quantify the quality of the process output. To 
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answer this question, we must develop the means to 
translate product specifications into quality metrics 
to identify the quality of  the process output without 
ambiguity. In essence, measurements o f  quality met- 
rics serve as calibration standards by which we tune 
our classification tools. If the calibration standards 
are not accurate, the classification tools will not be 
accurate. Alternatively, we might try to build a rela- 
tionship between process signatures and the most 
significant process variables. This would entail a 
design-of-experiments approach where we vary the 
pertinent process variables (for example, dull tool to 
sharp tool) under a variety of  sensor configurations 
so that we can guarantee a complete yet concise 
view of  the process variables in the data set used for 
training. Under this scheme, multiple classes of  
process output would be defined according to the 
variables used in the experiment. In correlating 
process signatures to process variables, we are 
assuming a direct relationship between process vari- 
ables and the quality of  the process output. 

Once the training data are available we must still 
formulate a relationship between process signatures 
and their corresponding classifications. As demon- 
strated in this paper, artificial neural networks offer 
many advantages over traditional statistical classifi- 
cation tools in this capacity. Further research in this 
area could result in more efficient network training 
algorithms, better feature extraction and selection 
methods, or more accurate decision functions. There 
is a tremendous volume of  research conducted in the 
field of  neural networks that can be applied to the 
manufacturing signature analysis problem. 

Finally, consideration must be given to application 
of  these new technologies in the manufacturing envi- 
ronment. This includes both development of  software 
tools, which allow manufacturing engineers to exploit 
the technology, and implementation of  neural network 
hardware that could facilitate real-time control of  
complex processes. The long-term vision of  our 
research consists of  a signature analysis toolbox that 
includes a variety of  sensors, signature analysis tools, 
and the ability to export the "blueprint" of  a signa- 
ture-monitoring system. Ideally, a manufacturing 
engineer could approach a new process with this tool- 
box, collect a number of  signatures, and then subject 
these signatures to a selection of  analysis tools. The 
result of  this analysis would be the blueprint for an 
on-line process monitoring system. 
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